Applications

  1. J. K. Patel and G. Natarajan (2017). A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids. Journal of Computational Physics. Volume 350. pp. 207-236. doi:10.1016/j.jcp.2017.08.047.
  2. Y. Huang, T. Nagel, and H. Shao (2017). Comparing global and local implementations of nonlinear complementary problems for the modeling of multi-component two-phase flow with phase change phenomena. Environmental Earth Sciences. 76:643. doi:10.1007/s12665-017-6970-5.
  3. T. Abe and A. T. Chronopoulos (2017). Convergence characteristics of the generalized residual cutting method. arXiv:1709.07184.
  4. J. Manik, M. Parmanand, S. Kotoky, P. Borgohain, A. Dalal, and G. Natarajan (2017). Lessons from Anupravaha: Towards a General Purpose Computational Framework on Hybrid Unstructured Meshes for Multi-physics Applications. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 1189-1202.
  5. M. Kumar and G. Natarajan (2017). Numerical Investigation of High Temperature Gradient Thermobuoyant Flows with Magnetic Field. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 993-1003.
  6. A. F. Queiruga and G. Moridis (2017). Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Computer Methods in Applied Mechanics and Engineering. Volume 322. pp. 97-122. doi:10.1016/j.cma.2017.04.016.
  7. T. Nagel, N. Böttcher, U. J. Görke, and O. Kolditz (2017). Computational Geotechnics – Storage of Energy Carriers. Springer. doi:10.1007/978-3-319-56962-8.
  8. F. C. Miranda, F. di Mare, A. Sadiki, and J. Janicka (2017). Performance analysis of different solvers for computing the radiative transfer equation in complex geometries using finite volume method and block structured grids. Computational Thermal Sciences. Volume 9. Issue 3. pp.269-282. doi:10.1615/ComputThermalScien.2017019001.
  9. P. Nair and G. Tomar (2017). A study of energy transfer during water entry of solids using incompressible SPH simulations. Sādhanā. Volume 42. Issue 4. pp. 517-531. doi:10.1007/s12046-017-0615-y.
  10. J. Mach, M. Beneš, and P. Strachota (2017). Nonlinear Galerkin finite element method applied to the system of reaction-diffusion equations in one space dimension. Computers & Mathematics with Applications. Volume 73. Issue 9. pp. 2053-2065. doi:10.1016/j.camwa.2017.02.032.
  11. H. Kanayama, M. Ogino, S. Sugimoto, K. Yodo, and H. Zheng (2017). On the Coarse Matrix Solver of Preconditioners for Magnetostatic Domain Decomposition Analysis. IEEJ Transactions on Power and Energy. Volume 137. Number 3. pp. 179-185. doi:10.1541/ieejpes.137.179.
  12. M. Gevorkyan, M. Hnatich, I. M. Gostev, A. V. Demidova, A. V. Korolkova, D. S. Kulyabov, and L. A. Sevastianov (2017). The Stochastic Processes Generation in OpenModelica. Communications in Computer and Information Science. Volume 678. Springer. pp. 538-552. doi:10.1007/978-3-319-51917-3_46.
  13. M. Parmananda, S. Khan, A. Dalal, and G. Natarajan (2017). Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries. International Journal of Heat and Mass Transfer. Volume 108. Part A. pp. 627-644. doi:10.1016/j.ijheatmasstransfer.2016.12.033.
  14. M. Kumar and G. Natarajan (2017). On the role of discrete mass conservation for non-Boussinesq flow simulations in enclosures. International Journal of Heat and Mass Transfer. Volume 104. pp. 1283-1299. doi:10.1016/j.ijheatmasstransfer.2016.09.073.
  15. N. Watanabe, G. Blöcher, M. Cacace, S. Held, and T. Kohl (2017). Geoenergy Modeling III – Enhanced Geothermal Systems. Springer. doi:10.1007/978-3-319-46581-4.
  16. M. Kumar and G. Natarajan (2017). On the role of discrete mass conservation for non-Boussinesq flow simulations in enclosures. International Journal of Heat and Mass Transfer. Volume 104. pp. 1283-1299. doi:10.1016/j.ijheatmasstransfer.2016.09.073.
  17. J. P. Wu (2016). Solution of Sparse Linear Systems with the Software Package LIS for Meso-scale Finite Element Simulation of Concrete Fractures. Materials Science and Engineering. pp. 830-836. doi:10.1142/9789813226517_0118.
  18. T. Hishinuma, H. Hasegawa, and T. Tanaka (2016). SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision. High Performance Computing for Computational Science – VECPAR 2016. Lecture Notes in Computer Science. Volume 10150. Springer. pp. 21-34. doi:10.1007/978-3-319-61982-8_4.
  19. I. Kissami, C. Cérin, F. Benkhaldoun, and G. Scarella (2016). Towards Parallel CFD Computation for the ADAPT Framework. Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science. Volume 10048. Springer. pp. 374-387. doi:10.1007/978-3-319-49583-5_28.
  20. J. K. Patel and G. Natarajan (2016). Volume-of-Solid Immersed Boundary Method for Free Surface Flows with Arbitrary Moving Rigid Bodies. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer. pp. 1181-1192. doi:10.1007/978-81-322-2743-4_112.
  21. M. Kumar and G. Natarajan (2016). Unified Solver for Thermobuoyant Flows on Unstructured Meshes. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer. pp. 569-580. doi:10.1007/978-81-322-2743-4_55.
  22. M. Cacace and M. Scheck-Wenderoth (2016). Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research. Volume 121. Issue 5. pp. 3742-3761. doi:10.1002/2015JB012682.
  23. R. B. Sills, A. Aghaei, and W. Cai (2016). Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Modelling and Simulation in Materials Science and Engineering. Volume 24. Number 4. 045019. 17pp. doi:10.1088/0965-0393/24/4/045019.
  24. J. -M. Plewa, O. Ducasse, P. Dessante, C. Jacobs, O. Eichwald, N. Renon, and M. Yousfi (2016). Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation. Plasma Science and Technology. Volume 18. Number 5. pp. 538-543. doi:10.1088/1009-0630/18/5/16.
  25. S. Itoh and M. Sugihara (2016). Analysis of the structure of the Krylov subspace in various preconditioned CGS algorithms. arXiv:1603.00176.
  26. K. Li, W. Yang, and K. Li (2016). A Hybrid Parallel Solving Algorithm on GPU for Quasi-Tridiagonal System of Linear Equations. IEEE Transactions on Parallel and Distributed Systems. Volume 27. Issue 10. pp. 2795-2808. doi:10.1109/TPDS.2016.2516988.
  27. T. Abe, Y. Sekine, and K. Kikuchi (2015). Generalization of the residual cutting method based on the Krylov subspace. AIP Conference Proceedings. Volume 1738. Issue 1. doi:10.1063/1.4952280.
  28. N. Kruis and M. Krarti (2015). KivaTM: a numerical framework for improving foundation heat transfer calculations. Journal of Building Performance Simulation. Volume 8. Issue 6. pp. 449-468. doi:10.1080/19401493.2014.988753.
  29. T. Asada, R. Aizawa, T. Suzuki, Y. Fujishima, and E. Hoashi (2015). 3D MHD simulation of pressure drop and fluctuation in electromagnetic pump flow. Mechanical Engineering Journal. Volume 2. Number 5. p. 15-00230. doi:10.1299/mej.15-00230.
  30. A. B. Jacquey, M. Cacace, G. Blöcher, N. Watanabe, and M. Scheck-Wenderoth (2015). Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations. Transport in Porous Media. Volume 110. Issue 3. pp. 409-428. doi:10.1007/s11242-015-0564-z.
  31. S. Itoh and M. Sugihara (2015). Formulation of a Preconditioned Algorithm for Conjugate Gradient Squared Method in Accordance with Its Logical Structure. Applied Mathematics. Volume 6. Number 8. pp. 1389-1406. doi:10.4236/am.2015.68131.
  32. A. Mielnik-Pyszczorski, K. Gawarecki, and P. Machnikowski (2015). Phonon-assisted tunnelling of electrons in a quantum well/quantum dot injection structure. Physical Review B. Volume 91. Issue 19. 195421. 8pp. doi:10.1103/PhysRevB.91.195421.
  33. J. K. Patel and G. Natarajan (2015). A generic framework for design of interface capturing schemes for multi-fluid flows. Computers & Fluids. Volume 106. pp.108-118. doi:10.1016/j.compfluid.2014.10.005.
  34. T. Asada, Y. Hirata, R. Aizawa, Y. Fujishima, T. Suzuki, and E. Hoashi (2015). Development of a three-dimensional magnetohydrodynamics code for electromagnetic pumps. Journal of Nuclear Science and Technology. Volume 52. Issue 5. pp. 633-640. doi:10.1080/00223131.2014.961988.
  35. W. Rühaak, V. F. Bense, and I. Saas (2014). 3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects. Computers & Geosciences. Volume 67. pp. 89-99. doi:10.1016/j.cageo.2014.03.001.
  36. L. Chen, D. Tao, P. Wu, and Z. Chen (2014). Extending checksum-based ABFT to tolerate soft errors online in iterative methods. Proceedings of 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). pp. 344-351. doi:10.1109/PADSW.2014.7097827.
  37. Y. Shimazu, T. Takeda, and W. F. G. van Rooijen (2014). Development of a three-dimensional kinetics code for commercial-scale FBR full core analysis. Proceedings of the ANS Physics of Reactors Topical Meeting. American Nuclear Society. CDROM. 15pp. hdl:10098/8510.
  38. P. Nair and G. Tomar (2014). An improved free surface modeling for incompressible SPH. Computers & Fluids. Volume 102. pp. 304-314. doi:10.1016/j.compfluid.2014.07.006.
  39. F. Vecil, J. M. Mantas, M. J. Cáceres, C. Sampedro, A. Godoy, and F. Gámiz (2014). A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo. Computers and Mathematics with Applications. Volume 67. Issue 9. pp. 1703-1721. doi:10.1016/j.camwa.2014.02.021.
  40. K. Gawarecki, P. Machnikowski, and T. Kuhn (2014). Electron states in a double quantum dot with broken axial symmetry. Physical Review B. Volume 90. Issue 8. 085437. 8pp. doi:10.1103/PhysRevB.90.085437.
  41. M. Basumatary, G. Natarajan and S. C. Mishra (2014). Defect correction based velocity reconstruction for physically consistent simulations of non-Newtonian flows on unstructured grids. Journal of Computational Physics. Volume 272. pp. 227-244. doi:10.1016/j.jcp.2014.04.033.
  42. M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn (2014). RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples. Geoscientific Model Development. Volume 7. pp. 1-21. doi:10.5194/gmd-7-1-2014.
  43. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi (2014). A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis. Computers & Chemical Engineering. Volume 60. pp. 197-212. doi:10.1016/j.compchemeng.2013.09.002.
  44. T. R. Keen, T. J. Campbell, J. D. Dykes, and P. J. Martin (2013). Gerris Flow Solver: Implementation and Application. Memorandum Report. NRL/MR/7320--13-9441. NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS OCEANOGRAPHY DIV. 193pp. DTIC Online:ADA588626.
  45. V. Sedenka, J. Ciganek, P. Kadlec, Z. Raida, M. Wiktor, M. S. Sarto, and S. Greco (2013). Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility. Radioengineering. Volume 22. Number 1. pp. 309-317.
  46. M. Cacace, G. Blöcher, N. Watanabe, I. Moeck, N. Börsing, M. Scheck-Wenderoth, O. Kolditz, and E. Huenges (2013). Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences. Volume 70. Issue 8. pp. 3585-3602. doi:10.1007/s12665-013-2402-3.
  47. A. Cuoci, A. Frassoldati, A. Stagni, T. Faravelli, E. Ranzi, and G. Buzzi-Ferraris (2013). Numerical Modeling of NOx Formation in Turbulent Flames Using a Kinetic Post-processing Technique. Energy & Fuels. Volume 27. Issue 2. pp. 1104-1122. doi:10.1021/ef3016987.
  48. M. Meyer, J. Sallwey, R. Blankenburg, and P. Graeber (2012). Implementing Parallelism into an Unsaturated Soil Zone Simulation Model. Scientific Journal of RTU. Series 19. Volume 51. pp. 25-29. URL:https://ortus.rtu.lv/science/lv/publications/15356.
  49. S. Boehmer, T. Cramer, M. Hafner, E. Lange, C. Bischof, and K. Hameyer (2012). Numerical simulation of electrical machines by means of a hybrid parallelisation using MPI and OpenMP for finite-element method. IET Science, Measurement & Technology. Volume 6. Issue 5. pp. 339-343. doi:10.1049/iet-smt.2011.0126.
  50. T. Sato and R. Greve (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology. Volume 53. Number 60. pp. 221-228. doi:10.3189/2012AoG60A042.
  51. Y. Jiang, J. M. Stone, and S. W. Davis (2012). A Godunov Method for Multidimensional Radiation Magnetohydrodynamics Based on a Variable Eddington Tensor. The Astrophysical Journal Supplement Series. Volume 199. Number 1. 14. 29pp. doi:10.1088/0067-0049/199/1/14.
  52. C. Park, J. Taron, A. Singh, W. Wang, and C. McDermott (2012). Multiphase Flow Processes. Thermo-Hydro-Mechanical-Chemical Processes in Porous Media. Lecture Notes in Computational Science and Engineering. Volume 86. Springer. pp. 247-268. doi:10.1007/978-3-642-27177-9_12.
  53. C. Park, N. Böttcher, W. Wang, and O. Kolditz (2011). Are upwind techniques in multi-phase flow models necessary? Journal of Computational Physics. Volume 230. Issue 22. pp. 8304-8312. doi:10.1016/j.jcp.2011.07.030.
  54. G. Natarajan and F. Sotiropoulos (2011). IDeC(k): A new velocity reconstruction algorithm on arbitrarily polygonal staggered meshes. Journal of Computational Physics. Volume 230. Issue 17. pp. 6583-6604. doi:10.1016/j.jcp.2011.04.039.
  55. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2011). A new Iterative Alternating Direction Implicit (IADI) algorithm for multi-dimensional saturated-unsaturated flow. Journal of Hydrology. Volume 408. Issue 1-2. pp. 127-139. doi:10.1016/j.jhydrol.2011.07.030.
  56. M. Chuang and M. Kazhdan (2011). Fast Mean-Curvature Flow via Finite-Elements Tracking. Computer Graphics Forum. Volume 30. Issue 6. pp. 1750-1780. doi:10.1111/j.1467-8659.2011.01899.x.
  57. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2010). Three-dimensional finite difference saturated-unsaturated flow modeling with nonorthogonal grids using a coordinate transformation method. Water Resources Research. Volume 46. Issue 11. W11521. 18pp. doi:10.1029/2009WR009024.
  58. S. Itoh and M. Sugihara (2010). Systematic Performance Evaluation of Linear Solvers Using Quality Control Techniques. Software Automatic Tuning: From Concepts to State-of-the-Art Results. Springer. pp. 135-152. doi:10.1007/978-1-4419-6935-4_9.
  59. R. Suda, K. Naono, K. Teranishi, and J. Cavazos (2010). Software Automatic Tuning: Concepts and State-of-the-Art Results. Software Automatic Tuning: From Concepts to State-of-the-Art Results. Springer. pp. 3-15. doi:10.1007/978-1-4419-6935-4_1.
  60. R. Suda and Q. Ren (2009). Accurate Measurements and Precise Modeling of Power Dissipation of CUDA Kernels toward Power Optimized High Performance CPU-GPU Computing. Proceedings of 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies. IEEE. pp. 432-438. doi:10.1109/PDCAT.2009.65.
Please send us information about your publications to devel@ssisc.org.