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Abstract

This study proposes a new method for the accelera-
tion of the projection method to compute a few eigen-
values with the largest real parts of a large monsym-
metric matrix.

In the field of the solution of the linear system, an
acceleration using the least squares polynomial which
minimizes its norm on the boundary of the convex
hull formed with the unwanted eigenvalues are pro-
posed. We simplify this method for the eigenvalue
problem wusing the same property of the orthogonal
polynomial. This study applies the Tchebychev poly-
nomial to the iterative Arnoldi method and proves that
the new method computes necessary eigenvalues with
far less complexity than the QR method. Its high accu-
racy enables us to compute the close eigenvalues that
cam not be obtained by the simple Arnoldi method.

1 Introduction

In the fluid dynamics and the structural analysis,
there are a number of cases where a few eigenvalues
with the largest real parts of a nonsymmetric matrix
are required. In economic modeling, the stability of a
model is interpreted in terms of the dominant eigen-
values of a large nonsymmetric matrix [7, 9].

Several methods have been proposed for this prob-
lem. The method proposed by Arnoldi in 1951 [1]
and the subspace iteration method due to Rutishauser
[5], which are variants of the projection method, have
been the most effective for this purpose. The Arnoldi
method, however, has a drawback of the expense of
too much memory space. This problem is solved by
using the method iteratively (Saad [6]). Although the
iterative Arnoldi method is quite effective and may
excel the subspace iteration method in performance,

the dimension of the subspace is inevitably large, in
particular when the wanted eigenvalues are clustered.
Moreover it favors the convergence on the envelope of
the spectrum.

To overcome this difficulty Saad [7] proposed a
Tchebychev acceleration technique for the Arnoldi
method, which is an expansion of the similar technique
for symmetric matrices. In the nonsymmetric case, we
have to consider the distribution of the eigenvalues in
the complex plane. The normalized Tchebychev func-
tion P, () = T,,(“=2) /T, (%) has the property

lim P,()\) =

n— oo

0 )\ is inside of F'(d, c)
0 \ is outside of F'(d,c) ’

where d and d % ¢ are the center and the focal points
of the ellipse F (d, ¢), which passes through the origin.
Considering the optimal ellipse which encloses the un-
necessary eigenvalues obtained by the previous step of
the Arnoldi method and applying this polynomial to
the matrix of the problem, we can make the new ma-
trix whose necessary eigenvalues are made dominant
(Manteuffel [4]). We continue the subsequent Arnoldi
iterations with the new matrix. This algorithm was
refined and expanded by Ho [3] to the case where the
reference eigenvalues do not have the largest or the
smallest real parts. However, the methods based on
the optimal ellipse have a defect of making the exces-
sively large ellipse compared with the distribution of
the unwanted eigenvalues.

In this paper, we use the convex hull proposed for
the solution of the nonsymmetric linear system (Saad
[8]) instead of the Manteuffel’s optimal ellipse. The
least squares polynomials minimize the Ly norm de-
fined on the boundary of the convex hull which en-
closes the unnecessary eigenvalues. From the max-
imum modulus principle, the absolute value of the
polynomial is guaranteed to take on a maximum on
the boudary of the convex hull. The polynomials can



be generated without any numerical integration, us-
ing the orthogonality of the Tchebychev functions. In
the eigenvalue problem, we can directly use the ortho-
normal polynomial generated by the Tchebychev func-
tions as the mini-max polynomial, since we have no
need to normalize the polynomial at the origin.

The numerical experiments show that the method is
effective for this purpose. The iteration of the Arnoldi
method proposed by Saad is used in our algorithm
and contributes to the economization of the memory
space, which is consumed mainly by the coefficients of
the polynomials.

2 Background

This section gives an outline of the methods re-
ferred to in this paper. The Arnoldi method, which
is a variant of the projection method, plays the main
role in our problem. The principle of the accelera-
tion technique using the optimal ellipse [4] is explained
briefly, since the properties used in this method are
also important in our algorithm. We then describe
the Tchebychev-Arnoldi method using the optimal el-
lipse and the least-squares based method, which were
developed for solving the linear system by Saad [7, 8].

2.1 The Arnoldi method

If w # 0, let K; = lin(u, Au,---, A"~ 'u) be the
Krylov subspace generated by u. Arnoldi’s method
computes an orthogonal basis {v;}! of K; in which
the map is represented by an upper Hessenberg ma-
trix i.e., an upper triangular matrix with sub-diagonal
elements:

1. v = u/ || u ||2, h171 = (A’Ul,’l}l);

2. forj=1,---,1—1, put
j
T =Av; =Y hivi, hitng =l 20 |l
=1

Vg1 =D w0, R = (Avje,v)
(i <j+1).

The algorithm terminates when z; = 0, which is im-
possible if the minimal polynomial of A with respect
to u is of degree > [. If this condition is satisfied,
H; = (hi;) is an irreducible Hessenberg matrix.

An iterative variant of the method is proposed by
Saad [7]. Starting with an initial vector u and fixing a
moderate value m we compute the eigenvectors of A,,.

We begin again, using as a starting vector a linear
combination of the eigenvectors. No proof exists for
the convergence of this method.

2.2 The Tchebychev-Arnoldi method

The original idea of using the Tchebychev polyno-
mial for filtering the desired eigenvalues was proposed
by Manteuffel in 1977 [4]. It was applied to the solu-
tion of nonsymmetric linear systems.

If zy is the initial guess at the solution x, an iter-
ation is defined with the general step z, = z,—1 +
Z?:_ll YniT; Where the +;;’s are constants and r; =
b— Ax; is the residual at step 7. Let e; = © —x; be the
error at the ¢th step then an inductive argument yields
en = [I—Asp(A)eg = P,(A)eg where s,(z) and P, (2)
are polynomials of degree n such that P,(0) = 1. To
make || e, |[|<|| P.(A) |||| €0 || small, the Tchebychev
polynomial is used as the sequence of polynomials.

The Tchebychev polynomials are given by T),(z) =
cosh(ncosh™*(2)). Let F(d,c) be the member of the
family of ellipses in the complex plane centered at d
with the focal points at d 4+ ¢ and d — ¢, where d and
¢ are complex numbers. Suppose z; € F;(0,1), z; €
F;(0,1); then

R(cosh™"(2;)) < R(cosh™'(z;)) & Fi(0,1) C F;(0,1),
R(cosh ™ (2;)) = R(cosh ' (z;)) & F;(0,1) = F;(0,1).

Consider the scaled and translated Tchebychev
polynomials P,(\) = T,,(%=2)/T,(2). Using the defi-
nition of the cosh, we can see that

\ encosh71($) +efncosh71(%)

P, =

n( ) encosh_l(%) +e—ncosh_1(%)
- encosh_l(@)—ncoshfl(g)

for large n.

Let 7(A) = limy, 00 |[Pa(A) "

, then we have
r(\) = eR(cosh ™! (%53) —cosh ™1 ()

From the above lemma and the definition of r(\), we
have that if \; € F;(d,c),\; € F;(d,c), then

r(\i) <r();) & Fi(d,c) C F;(d,c)

r(\) =r(A) & Fi(d,c) = F;(d,c)

r(\)=1e e F(d,c),

where F(d,c) is the member of the family passing

through the origin. Thus we have

lim P,(\) =

n— oo

0 \ is inside of F'(d, c)
00 A is outside of F'(d, ¢)



Suppose that we can find the ellipse that contains
all the eigenvalues of A except for the r wanted ones.
Then the algorithm runs a certain number of steps of
the Tchebychev iteration and take the resulting vector
zn as the initial vector in the Arnoldi process. From
the Arnoldi purification process one obtains a set of m
eigenvalues, r of which are the approximation to the
r wanted ones, while the remaining ones will be used
for adaptively constructing the best ellipse.

e Start: Choose an initial vector vy, a number of
Arnoldi steps m and a number of Tchebychev
steps n.

o [terate:

1. Perform the m steps of the Arnoldi al-
gorithm starting with vy. Compute the
m eigenvalues of the resulting Hessenberg
matrix. Select the r eigenvalues of the
largest real parts Ai,---,\, and take R =
{/N\H_l7 e /N\m}. If satlsﬁed stop, otherwise
continue.

2. Using R, obtain the new estimates of the pa-
rameters d and ¢ of the best ellipse. Then
compute the initial vector zg for the Tcheby-
chev iteration as a linear combination of the
approximate eigenvectors u;, t=1,---,r

3. Perform n steps of the Tchebychev iteration
to obtain z,. Take vy = z,,/ || 2z, || and back
to 1.

2.3 The least-squares based method

It has been shown that the least-squares based
method for solving linear systems is competitive with
the ellipse based methods and are more reliable (Saad
[8]).

By the maximum principle, the maximum modu-
lus of |1 — As,, ()| is found on the boundary of some
region H of the complex plane that includes the spec-
trum of A and it is sufficient to regard the problem
as being defined on the boundary. Smolarski and Say-
lor [10] suggest the use of the least squares residual
polynomial minimizing the Ls norm || 1 — Asp,(A) ||w
with respect to some weight w(A) on the boundary
of H. Suppose that the p + 1 points ho,hi,---, by,
constitute the vertices of H. On each edge E, of the
convex hull, v = 1,---, u, we choose a weight function
w, (N). Denoting by ¢, the center of the vth edge and
by d, the half width, i.e., ¢, = %(hl,+hl,_1), d, =

%(h,, — hy—1), the weight function on each edge is

defined by w,(\) = 2|d2 — (A — ¢,)?|" 3. The in-
ner product on the space of complex polynonuals is
defined by < p,q¢ >= Y4 1fE w, (A)[dA].
An algorithm using explicitly the modlﬁed morments
< t(A),t5(X) >, where {t;} is some suitable basis of
polynomials, is developed for the problem of comput-
ing the least squares polynomials in the complex plane.

We express the polynomial ¢;()\) in terms of
the Tchebychev polynomials ¢;(\) = > 7_ o%( J)T €3]
where £ = (A —¢,)/d, is real. The expansion coef-
ficients Ayff'j) can be computed easily from the three
term recurrence of the polynomials Sri1tr11(A) =
(A — ag)ti(A) = dktg—1(N). The problem mingep, , ||
1- )‘SH(A) ”w is to find n = (7707771,"‘,777171)7“ of
sn(\) = 21 miti(A) so that J(n) =] 1= Asn(A) |l

is minimum.
2.4 Approach

In the previous section we described the outline of
the least-squares based method on any arbitrary area.
It has a difficulty on the application to other purposes
due to the constraint P, (0) = 1.

We use the fact that the eigenvalue problem does
not require any such condition to the polynomial and
propose a new simple algorithm to get the mini-max
polynomial to accelerate the convergence of the projec-
tion method. The minimum property of the Tcheby-
chev functions described below is important to prove
the optimality of this polynomial.

Let a non-negative weight function w(\) be given in
the interval a > A > b. The orthogonal polynomials
po(A),p1(N),- -+, when multiplied by suitable factors
C, possess a minimum property:

the integral [(A™ + ap_1 A" + -+ 4 ag)?w(\)dA
takes on its least value when the polynomial in the
integrand is C'p,, (\). The polynomial in the integrand
may be written as a linear combination of the p;(\),
in the form (Cp,(\) + cp—1Pn—1(A) + ---¢cg). Since
the functions p, (A)y/w(\) are orthogonal, and in fact,
orthogonal if the p;(\) are appropriately defined, the
integral is equal to C? + Z: o €2, which assumes its
minimum at c¢g = ¢; = =cp_1 =0.

Using the above property, we describe the new
method to generate the coefficients of the ortho-
normal polynomials in terms of the Tchebychev weight
below.

We use the three term recurrence
(/\ — Qn )pn ()‘)

/Bn—i-lpn-l-l (A) = - ﬁnpn—l ()\)7

where p;(\) satisfies the ortho-normality. Because of



the condition of the use of the Tchebychev polynomial

N =Y AT - ) /d),
1=0

the constraints

n
< po,po >= 22 |7(g’,jo)|2 =1
v=1
”w

<p1,p1 >= Z[Qho |2+|'71 "1=1
v=1

m
<po.p >=2 AT =0
v=1

must hold.
Moreover each expansion of p;(\) at any edge must

be consistent. The condition 23" _ |70 )12 = 1 de-
rives 1
CO T =1,
|’7070 | 2# L] v 9 ,U/v

and we can choose T as 7(()0) The consistency of

) 4 A0 () —

n (/\)—701 + 71 c)/dy

= (WD AN+ = e /dy
derives

W d, =+ o,

W =ensd, =80 = ends V).

It can be rewritten as

(Vl) — dyt, ’Yéul) _ C,,t — A/étj]l) _ C,,/t

where ¢ is a real number.
Using the condition

v
<pop >= 3 A9

E:j;vf 0,

v=1 v=1 2[1,
the sum
o - )
Z(“Yo {—at)=— cht = (o1’ — €t
v=1 v=1
1<V <p)

derives the relation

m

Wi =et= (3 ent/n.

v'=1

Putting it into the equation

<p1,p1>= Z[Qho |2+|’Y1 ’1=1,
v=1

we have

22|cy

Tt derives t = 1//S where

I 13
S =S Rl = (3 ) /ul? +1d, 1.
v=1

v'=1

o
Z e )/l + [P = 1.

v'=1 v=1

From the above constraints, we can determine the val-
ues of all the coefficients of the polynomial using the
values of d,, c,,and pu.

3 Algorithm

We describe the details of our algorithm. We be-
gin with the definition of the notations. The mini-
max polynomial, which is derived by the definition of
the new norm on the boundary, is combined with the
Arnoldi method as an accelerator. We mention some
points to notice when we use the algorithm.

3.1 The definition of the L, norm

This section defines the Ly norm on the boundary
of the convex hull and other notations. We described
in the previous section the outline of the method by
the least squares polynomials, which is based on the
convex hull generated from the unwanted eigenvalues.
In this section we begin with the computation of the
convex hull.

Suppose a nonsymmetric matrix A is given. We
must implement some adaptive scheme in order to es-
timate the approximate eigenvalues. The combination
of the eigensolver and the accelerating technique is de-
scribed subsequently.

Nonsymmetric matrices have complex eigenvalues
which distribute symmetrically in terms of the real
axis. Hence we can consider only the upper half of the
complex plane. Using the sorted eigenvalues, we start
from the rightmost point and make it the vertex hqy of
the convex hull H. We compute the gradient between
h; and the other eigenvalues with smaller real parts,
and choose the point with the smallest gradient as
higa.



Since the eigenvalues obtained by the Arnoldi
method is roughly ordered in terms of the absolute
value, the adoption of the bubble sort is appropri-
ate. This algorithm uses the property that only the
points in the upper half plane are concerned. It re-
quires O(n?) complexity in the worst case and O(n)
in the best case.

We then define the L, norm on the boundary of the
convex hull H constituted by the points hg,---, hy.
Oneachedge E, (v=1,2,---pu), we denote the cen-
ter and the half width by ¢, = 1(h, + h,_1) and
dy, = % (hy —hy_1), respectively, and define the weight
function by

v =28~ (eR)
Using the above definition, the inner product on 0H
is defined by

<pg>= /a JRLCA TV ROV

"
—Z/ M)A = Z<p7q>u.

| p(A) lw=< p,p > satisfies the following theorem.

Theorem 1 In an inner product space, the norm ||
u || of an element u of the complex linear space has
the following properties:
1| R f|= [&] ] ]
2. ||ul|>0 unlessu=0; | ul|=0 impliesu=0.

o flutv <[ ull+ vl
3.2 The computation of the coefficient

We have mentioned the expression of the polyno-
mial i.e.,

- A—c,
pa(N) = DT
i=0 v
Using the three term recurrence of the Tchebychev
polynomials, a similar recurrence

Brt1Pr+1(A) = (A — ar)pr(A) — depr—1(A)

on the p;(\) holds. Denoting &, by &, = (A —¢,)/d,,
the equation can be rewritten as

5k+1pk+1()‘)

k k—1
= (du€ + o —ar) D ANTHE) = 0k Y A Ti(E)
=0

=0

From the relations

EN(6) = T (©+Tia(€)] >0, €T =Ta(€),

it is expressed by

> wETi(€)

(vo + l’}’2)1’11 (6)

1
= 571T0(§) + 5

1 1
+oo 5 (i i) T (€ + 4 S (1 + 1) T (6)
(7n+1 = 0)
It is arranged into
42 0

ﬁn-‘rlpn-l-l (/\) dv[—

+Z (W A DTHE)]

v — Qn Z’Yzljn)T _5 Z’Yz(’fn) 1

(T—1 =T).
Comparing the equation with

n+1

pn—l—l Z ,Yz n+1

we find the following relations

v 1 1% v v
Basi W mes = §dw§,2 +(ey = )W) = 82281

Brt17, T)L+1 =d, (%() )+ ’Yé"ﬁ) +(cv—an)y 52 5n7{”2 1

2
and
v d v v v v
Bt = 5 0+ e man)n () =60
i=2,..,n+l (Ay(yl)n = %127 'yl(';) i>n).
The choice of the initial values ’Y(()o) , 'yéy) and 'yl(yl)

is described in the previous section.

3.3 The computation of the coefficients in
the three term recurrence

Using the relation
(A = k)i (A) = kpr—1(A)

and the orthogonality of the Tchebychev polynomials,
we derive

Br1Pr+1(A) =

Bri1 =< Dhi1,Dres1 >12



“w

/ e PrrTwy (V)dA|
E,

v=1

, k1

—ZZ

where we denote by 3’

% k+1% k+1

r n

n
Zi:oai = 2a0 + Z a;.
=1

a and J are computed similarly:

ar =< Apg, pr >

u 1k
Z ZZ zkryzk—"dz 'Yz(‘;c)%Hk

)%

6k =< Apk:vpk—l >= Zduvu

v=1
where
vy, = ’73]2’7(51,/1271
+(7(()Uk) + 2751/))7 k—1
=1y -
+ Z 5(%(”)1 kT 71(:—)1,16)75,1271-
i=2

3.4 The polynomial iteration

The polynomial obtained in the above procedure is
applied to the matrix of the problem. We describe the
algorithm combined with the Arnoldi method. The
Arnoldi method is expressed as follows.

J
’ﬁj+1 = A’Uj —Zh,‘j’l}i, h,‘j = (AUJ',U,'), 1= 1, ...,j,

hjvi; =041 1l i1 = 0541/ hjsn,;
where vy is an arbitrary non-zero initial vector. The
eigenvectors corresponding to the eigenvalues which
have the largest real parts are selected and combined
linearly. The remaining eigenvalues constitute the
convex hull. Suppose we have each coefficients of the
polynomial p,(A), where n is some appropriate inte-
ger. Put the combined vector into vy and we obtain
the new vector v, in which the components of the
necessary eigenvectors are amplified by operating the
following recursion:

po(A)vg =9 Ewe  (1<v<p)

p1(A)vo =787 Bvo + 17 fdy - (A = ¢, B)ug
Pit1(A)vg = [(A — . E)pi(A)vg — 6;pi—1(A)vo]/Bit1-

Denoting p;(A)vg by w;, the above recurrence is trans-
formed into

(v)

Wo = Yp,0 Y0

wy = 757 v0 + 11 /d, - (Ave — e, v0)

(7((JV1)_'Y110u/d )U0‘|"Y /d - Avg

Wi41 = [Awi—aiwi—fsz‘wi—l]/ﬂiH (Z =2, 7nT)~
We mention the calculation of the complex eigen-

vector [11]. Suppose that the components of

Zo,---,%, has been eliminated and we have

Us = Oéldl’l-l-alﬂ, Vg1 = AUS = (11A1&71+a1)\1$1.

If we write

a1y = 21 + 1wy, A =& +im

then

Us = 221, ’US_|_1 = 25121 — 27]1101,

. 1 .
zZ1 + oy = §[U5 + l(flus - Us+1)/771]-

Apart from a normalizing factor we have therefore

1 = Mmus + 1(§1Us — Vsq1)-

4 The complexity
4.1 The orthogonality-based method

We use the number of multiplications as the mea-
sure of complexity. The QR method requires 4n? mul-
tiplications in one complete step, where we denote by
n the order of the matrix. The double-shifted QR
method, which we use for our problem, requires 8n?
multiplications in one step in which the two shifts con-
cerning a conjugate pair are performed [11]. Hence,
denoting the number of the steps of the QR method
by ngr, we see that 4n’ngr real multiplications are
necessary to solve the eigenvalue problem of the ma-
trix A.

The complexity of the Arnoldi method with the re-
orthogonalization, which uses the QR method to com-
pute the eigenvalues of the Hessenberg matrix, is esti-
mated using the above result. It follows the algorithm
of the orthogonality-based method.



We require in the rth step of the computation of
hir, 4 =1,---.r+1, n% 4+ 2nr + 2nr + n real mul-
tiplications. The total complexity required to obtain
the Hessenberg matrix H of order my is, therefore,

man® +2ma(ma 4+ )n+ (ma — 1)n

=man? + (2m% +3ms — )n

real multiplications. Adding this to the computation
of the eigenvalues of H by the QR method, the com-
plexity of the Arnoldi method is approximately given
by man? + (2m? + 3ma — 1)n + 4m%ngr real multi-
plications.

The evaluation of the complexity of the orthogonal-
ity based method is as follows:

1. The computation of the eigenvalue estimates re-
quires

man® + (2m? +3ma — Dn +4m?ngr
real multiplications.

2. Suppose that we have u vertices for the convex
hull. The computation of the coefficients fyl(f'j) re-
quires

W6+ 303+ 4+ 30) &l (nr)” + o]

n=1

complex multiplications where nr is the order of
the polynomial. Each complexity of the other co-
efficients i.e., 3, a, and 9, is

NZ(@ + 1) 7 ,u[(nT)2 + 3TLT],

anl

m Z [(i 4 1) + (i + 1)] = p[2(n7r)? + 6n7),

and

np—1

1l ST+ 142+ 26— 2)]) = ul2(nr)” — 2ng]

=1

complex multiplications, respectively. The total
number of the complex multiplications is approx-
imately $u[13(nr)? + 31ng].

3. The polynomial iteration requires
n+14+n+n+(nr—1)(n*4+n+n) = nrn®+2nrn

complex multiplications.

The total computation of the orthogonality-based
method for an iteration consists of the sum of those of
the three parts, i.e.,

man® + (2m?% +3ma — V)n + 4m’nor

real multiplications and
1
nrn? + 2npn + 5/1[13(117’)2 + 31ny]
complex multiplications.

4.2 The additional cost of the least-
squares based method

The complexity of the least-squares based method
is larger, since we need the additional computation
of the least squares polynomial using the mini-max
polynomials of degree ¢ = 0, - - -, n, which are obtained
by our method, as an ortho-normal basis.

The total superfluous cost of the computation of
the least squares polynomial is &(n + 1)(n+2)(n +3)
complex multiplications and gn(n + 1)(2n + 1) real
multiplications.

4.3 The complexity of the Manteuffel’s
method

The complexity of the computation of the best el-
lipse [4] is rather complicated. It depends on the dis-
tribution of the eigenvalues obtained by the Arnoldi
method and classified into several cases.

1. When a pair-wise best point is the mini-max solu-
tion, the required computation per a pair of eigen-
values is at most 7 real multiplications and the so-
lution of a cubic equation, if the imaginary parts
of the two points are equal. If they are not, 78
real multiplications and the solution of the equa-
tion of the fifth degree are required. Moreover we
need the judgment whether the other eigenvalues
are in the ellipse or not. The number of pairs is
%mA (ma—1) where we denote by m 4 the number
of the eigenvalues.

2. If no pair-wise best point is the solution, we need
the computation of the candidate ellipse for every
combination of three points, which contains 48
real multiplications for %mA(mA — 1)(ma —2)
combinations. Then the ellipse with the smallest
convergence factor must be chosen.

The complexity of the Newton’s method for the non-
linear equations depends on the initial value. Con-
sidering that it is used for every combination of the



eigenvalues, we can conclude that the orthogonality-
based method, whose complexity of the corresponding
part is 1p[13(n7)? + 31ng] is better.

4.4 Other arguments

The speed of linear convergence of the QR method
is controlled by max,=1 ....n—1 |Arg1/As|. With shifts
of origin, the convergence of aq(lkn) to an eigenvalue is
asymptotically quadratic.

The study of the convergence of the Arnoldi method
is far less sufficient than that of the Lanczos method,
since the theory of the uniform approximation on a

compact set in the complex plane is not so advanced

[2].

5 Numerical Experiments

This chapter reports the results of the numeri-
cal experiments of our new method and evaluates its
performance. The experiments are performed on a
HP9000/720, using double precision.

We start from the decision of each element of the
matrix given in the problem. In this section, the
scaled sequences of random numbers are assigned re-
spectively to the real and the imaginary parts of the
eigenvalues except for those which are to be selected.
The matrices are block diagonals with 2 x 2 or 1 x 1
diagonal blocks. Each block is of the form

a b/2
[ -2b a ]

to prevent the matrix to be normal and has eigenval-
ues a + bi. It is transformed by an orthogonal matrix
generated from a matrix with random elements by the
Schmidt’s orthogonalization method. m4 and ny de-
note the order of the Arnoldi method and the max-
imum order of the Tchebychev polynomials respec-
tively. We compare this algorithm with the double-
shifted QR method [12].

In the ortbogonality—based method, the Apax is
computed by A = || Z;41 |2/ Z; ||2 where %, = AZ;,
since we suppose that the maximum eigenvalue is a
positive real number.

The error is computed by the Ly norm. The com-
putation time is measured by HP9000/720, where the
unit is 4 second.

The complexity of the orthogonality-based method
can be seen to be roughly O(n?) as our evaluation
which we made in the previous chapter indicates, while
that of the QR method O(n?).

The relation between the error and the parameters
of the orthogonality-based method is given in Figure
1. We denote the degree of the polynomial by n and
the order of the Arnoldi method by m. This graph
shows that the order of the Arnoldi method has the
closer correlation with the error than the degree of the
orthogonality-based method. This is caused by the
fact that the Arnoldi method can not always obtain
the eigenvalue of the largest modulus.

We adopt the iterative Arnoldi method in the
orthogonality-based method. The Arnoldi method
performed for reference is also made iterative.

In this section we test the five variations of the dis-
tribution of the eigenvalues using the matrices of order
50. The cases of Apax = 2,1.5, and 1.1 while the dis-
tribution of the other eigenvalues is RA € [0, 1], and
S € [—1,1]. We denote the number of the iterations
by i4.

Case 1

Amax 18 2, while the distribution of the other eigenval-
ues is A € [0,1], S\ € [-1,1]. The effect of the it-
eration is significant, especially for the orthogonality-
based method. This tendency becomes sharper as the
maximum eigenvalue gets closer to the second eigen-
value.

Case 2

The maximum eigenvalue is 1.5, while the distribution
of the other eigenvalues is RA € [0,1], S\ € [-1,1].
Some variations of the combination of the parameters
14 and ny are examined. The best combination of the
parameters is not trivial and the consideration on this
problem is given in the last section.

Case 3

The maximum eigenvalue is 1.1, while the distribution
of the other eigenvalues is: RA € [0,1], S\ € [—1,1].
In this test we examine the relation between the pa-
rameter i4 and the order of the Arnoldi method m 4.
The table shows that it is more effective to decrease
the order of the Arnoldi method than to decrease the
number of the Arnoldi iteration.

6 Conclusion
We proposed the iterative Arnoldi method using

the orthogonality of the Tchebychev polynomials for
the large nonsymmetric eigenvalue problem.



This method requires the computation of man? +
(2m% +3ma — 1)n+4m? nor real multiplications and
nrn?® + 2npn + p{13(nr)? + 31nr} complex multi-
plications, which is less than those of the method by
the Manteuffel’s optimal ellipse technique, which re-
quires the solutions of nonlinear equations and O(n?)
computations for every combination of eigenvalues in
most cases, and the least squares method, which costs
O(n?) superfluous complexity.

We examined the other problems such as computa-
tional error by numerical experiments. Our algorithm
shows the best performance in most conditions except
for the case where the moduli of some unwanted close
eigenvalues is much larger than those of the neces-
sary eigenvalues. In such a case we can not obtain
the wanted eigenvalues. The deflation seems to be the
most hopeful technique to get rid of them and con-
tinue the process. We need some additional study for
this difficulty.
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Figure 1: The relation between the error and the parameters n, m of the orthogonality-based method

orthogonality-based Arnoldi QR
A | ma | nr | error | time | 74 | ma | error | time error | time
1 5 15 | 1.1E-10 11 1 15 2.3E-09 18
2 5 15 | 3.6E-15 23 2 15 | 8.9E-16 34

5.1E-15 | 112

Table 1:  Amax = 2, the distribution of the other eigenvalues : R\ € [0, 1], S\ € [—1,1]

orthogonality-based Arnoldi QR
1A | ma | nr | error | time | 74 | ma | error | time error | time
1 15 5.0E-05 15 1 15 1.2E-05 17
15 | 1.1E-08 25 15 | 5.3E-11 33
15 | 1.9E-11 32 15 | 3.7E-15 49
15 5.6E-14 42 15 3.3E-15 63
15 | 3.4E-15 54 15 | 2.8E-15 79 3.6E-15 | 111
20 | 3.0E-15 42
19 | 8.9E-16 38

60 | 1.3E-14 47

T | W N

=W W W Uy & W
| Orf v | O | O] O] Ot

Table 2:  Amax = 1.5, the distribution of the other eigenvalues : R\ € [0, 1], S\ € [-1,1]

orthogonality-based Arnoldi QR
A | ma | nr | error | time | 74 | ma | error | time error | time
50 10 | 3.2E-15 | 240 1 50 7.5E-13 235
45 20 | 6.9E-15 | 206 1 45 4.1E-10 191
30 20 | 3.2E-15 | 161 2 50 | 7.7E400 | 531
20 15 | 6.3E-12 111
15 20 | 3.5E-13 | 112 1 50 7.5E-13 236
10 20 | 2.9E-14 96

5.2E-15 | 113

O | W DO =] =

Table 3:  Amax = 1.1,  the distribution of the other eigenvalues : R\ € [0, 1], S\ € [-1,1]



