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ABSTRACT

In this thesis, we propose a highly efficient accelerating method for the restarted Arnoldi iter-

ation to compute the eigenvalues of a large nonsymmetric matrix. Its effectiveness is proved by

various numerical experiments and comparisons with other approaches. Several new results on the

characteristics of the polynomial acceleration are also reported.

The Arnoldi iteration has been the most popular method for nonsymmetric large eigenproblems.

Its defect of increasing computational complexity per iteration step was improved with the explicitly

restarting technique, by which the dimensions of the Krylov subspaces are kept modest. Although

the restarted Arnoldi iteration is a quite effective approach, the dimension of the subspace becomes

inevitably large, especially when the required eigenvalues are clustered. Furthermore, it favors the

convergence on the envelope of the spectrum. In this paper, we seek a polynomial such that

the components in the direction of unwanted eigenvectors are damped, using the approximate

eigensolution estimates obtained in the previous step. Although the Chebyshev acceleration, which

defines an elliptic area in the complex plane containing the unwanted Ritz values to be damped, can

be combined with the original explicitly restarted Arnoldi iteration, it is restrictive and ineffective

if the shape of the convex hull of the unwanted eigenvalues bears little resemblance with an ellipse.

In our study, an accelerating polynomial is chosen to minimize an L2 norm of the polynomial on

the boundary of the convex hull with respect to some suitable weight function. A new simple

algorithm is proposed for the efficient computation of the mini-max polynomial to accelerate the

convergence of the Arnoldi iteration.

From the numerical results, we can derive the strong dependency of the polynomial acceleration

on the distribution of spectrum, which proves the better performance of our algorithm than the

ellipse-based methods, in the cases where the moduli of the wanted eigenvalues are considerably

larger than those of the unwanted eigenvalues, and the faster convergence than those of all the

other approaches, especially with the non-clustered distribution of the spectrum.

Finally, we propose a new parallelization technique for the nonsymmetric double shifted QR

algorithm with perfect load balance and uninterrupted pipelining on distributed memory parallel

architectures, which is strongly required from the viewpoint of complexity of the Arnoldi iteration.

Its parallel efficiency is much higher than those reported in other papers.
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Chapter 1

Introduction

1.1 Overview

In the last few years, there have been great progress in the developments of the methods for the s-

tandard eigenproblem. Arnoldi’s method, which have the disadvantage of increasing computational

complexity per iteration step, was improved with the restarting technique, by which the dimensions

of the Krylov subspaces is kept modest. Although the Arnoldi iteration is a considerably effective

solution, the dimension of the subspace becomes excessively large, especially when the required

eigenvalues are clustered. Furthermore, outer eigenvalues on the envelope of the spectrum show

faster convergence. This difficulty has been overcome by using the polynomial acceleration tech-

nique, which is an extension of the similar technique for symmetric matrices. In the nonsymmetric

case, we consider the distribution of the eigenvalues in the complex plane. Suppose A ∈ Rn×n is

a diagonalizable matrix with eigensolutions (uj , λj) for j = 1, ..., n. Letting p(·) be some polyno-

mial, the current starting vector x0 can be expanded as p(A)x0 = c1p(λ1)u1 + · · · + cnp(λn)un

in terms of the basis of eigenvectors. Then if we assume that the eigenvalues are ordered so

that the wanted k ones are located at the beginning of the expansion, we seek a polynomial such

that maxi=k+1,...,n |p(λi)| < mini=1,...,k |p(λi)| holds. Acceleration techniques attempt to improve

the restarted Arnoldi iteration by solving this min-max problem, and applying the accelerating

polynomials to its restart vectors.
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1.2 Projection Methods

Most algorithms for solving large eigenvalue problems employ a projection technique, an approx-

imation of the exact eigenvector u by a vector ũ belonging to some subspace K referred to as the

subspace of approximants. The subspace iteration algorithm, which will be described in Chapter

3, is a block generalization of the power method and is the most simplest approach, although it is

not competitive with other projection methods.

The Krylov subspace methods extract approximations from a subspace of the form

Km = span{v,Av,A2v, ..., Am−1v} (1.1)

referred to as a Krylov subspace. Arnoldi’s method and Lanczos’ method are classified in the or-

thogonal projection methods, while the nonsymmetric Lanczos algorithm in the oblique projection

method. Although it is an extension of the simple power method, the projection method turns out

to be one of the most successful methods for extracting eigenvalues of large matrices.

Arnoldi’s method is an orthogonal projection method onto Km for general non-Hermitian ma-

trices, which was introduced originally as a means of reducing a dense matrix into the Hessenberg

form and later discovered that it leads to a valuable method for approximating the eigenvalues of

large sparse matrices. Furthermore, if we are interested in only a few eigensolutions of A, we can

restart the algorithm and avoid the difficulty of its high storage and computational requirement

as m increases, that is, we compute the approximate eigenvectors and use it as an initial sequence

of vectors for the next run of the Arnoldi’s method.

1.3 Accelerating Techniques

Although these algorithms are attractive because of its simplicity, their convergence rate may be

unacceptably slow in some cases. Polynomial accelerating techniques are useful tools for speeding

up the convergence of these methods. A polynomial iteration takes the form of xk = pk(A)x0

where pk is a polynomial which is determined from some knowledge on the distribution of the

eigenvalues of A. The polynomial p is selected to be optimal in some sense, and this leads to the

use of Chebyshev polynomials.

Given a set of approximate eigenvalues of a nonsymmetric matrix A, a simple region which

encloses the spectrum of A can be constructed in the complex plane. One of these ideas is to

2



use an ellipse that encloses an approximate convex hull of the spectrum. If we consider an ellipse

centered at δ with focal distance ϑ, the shifted and scaled Chebyshev polynomials defined by

tk(ζ) =
Tk( δ−ζ

δ )
Tk( δ

ϑ )
(1.2)

are nearly optimal.

1.4 Least Squares Arnoldi Method

The choice of ellipses as enclosing regions in Chebyshev acceleration, however, may be overly

restrictive and ineffective if the shape of the convex hull of the unwanted eigenvalues bears little

resemblance to an ellipse. In this thesis, we propose a simple method for determining the accelerat-

ing polynomial, which is chosen so as to minimize an L2 norm of the polynomial p on the boundary

of the convex hull of the unwanted eigenvalues with respect to some suitable weight function w.

The only restriction with this technique is that the degree of the polynomial is limited because of

cost and storage requirements. This can be overcome by compounding low degree polynomials,

and the stability of the computation is enhanced by employing a Chebyshev basis. We prove the

optimality of our method and confirm its validity by various experiments.

From the results on the complexity of our method, we can see that the number of floating point

operations rapidly increases with the size of the subspace dimension m, which indicates that we

need to take m as small as possible if we want to avoid QR to become a bottleneck. In this thesis,

we propose a new data mapping method with best possible scalability for the parallelization of the

double shifted QR algorithm, in which the loads including the lookahead step are balanced, and

the computations are pipelined by hiding the communication latency. Our implementation on a

Fujitsu AP1000+ attains parallel efficiency higher than 90% without matrix size reduction, and

70–80% for the whole process including the matrix size reduction.

1.5 Organization

This thesis is constructed by the following topics: Chapter 2 describes the basic concepts which

formulate the algebraic eigenvalue problem. Preliminary definitions are also given in this chapter.

Chapter 3 introduces some orthodox approaches to solve the eigenproblem, which can be considered

as the derivatives of the concept of vector iterations. In Chapter 4, we will outline the fundamental

results on the Arnoldi process, obtained by the preceding researches. Chapter 5 will be devoted to

3



the polynomial acceleration. We will begin with the basic idea of the polynomial acceleration, which

was originally developed for solving linear systems, and show that they can be more effectively

applied to eigenproblems. Chapter 6 describes the details of our method. We introduce the idea of

acceleration using the least squares polynomials, and propose an efficient method for determining

its parameters. Our algorithm is evaluated by sufficient number of test problems from various

applicational fields in Chapter 7. We will also discuss some inherent problems, lying on the more

effective computation. Our current goal is the integration of iterative eigensolver and parallel direct

methods for nonsymmetric matrices. In this thesis, it is partially implemented in Chapter 7. Full

integration requires more thorough research but it will be realized in the very near future. The

concluding remarks in Chapter 8 will include our perspectives on the problem.

4



Chapter 2

Basic Facts in Linear Algebra

2.1 Definitions

2.1.1 Matrices and Eigenvalues

Definition 2.1. 1 (General Definitions) By an m by n matrix, we mean an array of mn ele-

ments aik, where i = 1, ...,m and k = 1, ..., n, arranged in a rectangular form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1)

An n by n matrix is called a square matrix of degree n. Each horizontal n-tuple of an m×n matrix

is called a row, and each vertical m-tuple is called a column of the matrix. A square matrix is called

a diagonal matrix if aik = 0 for i �= k. An n×n matrix whose (i, k)-element is equal to δik is called

the identity matrix of degree n, where δik is the Kronecker delta. A 1 × n matrix (a1, a2, ..., an) is

called a row vector of dimension n, and an m× 1 matrix⎛
⎜⎜⎜⎜⎝

b1
...

bn

⎞
⎟⎟⎟⎟⎠ (2.2)

is called a column vector of dimension m.

Definition 2.1. 2 Let A be a square matrix. If there exists a matrix A−1 such that AA−1 =

A−1A = I, then A−1 is called the inverse matrix of A, and A is called a nonsingular matrix.

5



Definition 2.1. 3 Let A = (aik) be an m × n matrix. Then the n × m matrix (bik) such that

bik = aki for all i and k is called the transposed matrix of A and is denoted by AT . Let A = (aik)

be a square matrix with elements in the complex number field C. Then the adjoint matrix AH of

A is the transposed conjugate ĀT = (āki).

Definition 2.1. 4 A complex scalar λ is called an eigenvalue of the square matrix A if a nonzero

vector u of a complex vector space Cn exists such that Au = λu. The vector u is called an eigen-

vector of A associated with λ, and the pair (u, λ) an eigensolution. The set of all the eigenvalues

of A is called the spectrum of A and is denoted by σ(A).

Proposition 2.1. 1 If λ is an eigenvector of A, then λ̄ is an eigenvalue of AH = ĀT . An

eigenvector v of AH corresponding to the eigenvalue λ̄ is called a left eigenvector of A.

Definition 2.1. 5 The polynomial

ψ(λ) = det(A− λI) (2.3)

is called the characteristic polynomial of A. The equation ψ(λ) = det(A − λI) is called the char-

acteristic equation of A.

The maximum absolute value of the eigenvalue of A is called the spectral radius and denoted

by ρ(A).

2.1.2 Selfadjoint and Unitary Matrices

Definition 2.1. 6 If A = AT holds, A is called symmetric. If A = Ā holds, A is called real. If

A = AH = ĀT holds, then A is called Hermitian or selfadjoint.

Definition 2.1. 7 The innerproduct (u, v) of two vectors u and v are defined as

(u, v) = uHv = ūT v =
∑

ūjvj (2.4)

Definition 2.1. 8 (Vector Norms) The vector whose components are all 0 is called the zero

vector and is denoted by the same symbol 0. A vector norm on Cn is a real-valued function which

satisfies the following three conditions:

1. ‖ ku ‖= |k| ‖ u ‖, ∀x ∈ Cn, ∀k ∈ C.

2. ‖ u ‖> 0 unless u = 0; ‖ u ‖= 0 implies u = 0.

6



3. ‖ u+ v ‖≤‖ u ‖ + ‖ v ‖, ∀u, v ∈ Cn.

The Euclidean norm of a complex vector u ∈ Cn defined by

‖ u ‖2= (u, u)
1
2 (2.5)

is a special case of the Hölder norms

‖ u ‖p=

(
n∑

i=1

|ui|p
) 1

p

. (2.6)

We define a special set of matrix norms for a general matrix A in Cn×m by

‖ A ‖pq= max
x∈Cn,x �=0

|Ax|p
|x|q

(2.7)

Definition 2.1. 9 (Matrix Norms) The matrix whose components are all 0 is called the zero

matrix and is denoted by the symbol O. A matrix norm on Cn×m is a real-valued function which

satisfies the following three conditions:

1. ‖ kA ‖= |k| ‖ A ‖, ∀x ∈ Cn×m, ∀k ∈ C.

2. ‖ A ‖> 0 unless A = O; ‖ A ‖= 0 implies A = O.

3. ‖ A+B ‖≤‖ A ‖ + ‖ B ‖, ∀A,B ∈ Cn×m.

Definition 2.1. 10 A is said to be orthogonal if A is real and ATA = I holds, and unitary if

AHA = I holds.

2.1.3 Subspaces

Definition 2.1. 11 The range of the mapping A : Rm → Rn is defined by

R(A) = {Ax|x ∈ Cm}, (2.8)

and its kernel or null space by

N(A) = {x ∈ Cm|Ax = 0}. (2.9)

The rank of a matrix A is equal to the dimension of its range, i.e., to the number of linearly

independent columns. A subspace S is said to be invariant under a matrix A if AS ⊂ S. The

subspace N(A− λI), which is invariant under A, is called the eigenspace associated with λ.

7



2.1.4 Canonical Forms of Matrices

Definition 2.1. 12 (Similarity Transformation) Two matrices A and XAX−1, where X is

a nonsingular matrix, is said to be similar. The mapping A → XAX−1 is called a similarity

transformation.

Definition 2.1. 13 An eigenvalue λ of a matrix A is said to have the algebraic multiplicity μ,

if it is a root of multiplicity μ of the characteristic polynomial of A. The eigenvalue of algebraic

multiplicity one is called simple. A nonsimple eigenvalue is called multiple.

Definition 2.1. 14 An eigenvalue λ of A is said to have the geometric multiplicity γ, if the

maximum number of independent eigenvalues associated with λ is γ.

For the proofs of the following two theorems, see Chatelin [10] and Halmos [26].

Lemma 2.1. 1 For every integer l and each eigenvalue λi, we have

N(A− λiI)l+1 ⊂ N(A− λiI)l. (2.10)

In a finite dimensional space, there is a smallest integer li such that

N(A− λiI)li+1 = N(A− λiI)li . (2.11)

Here, li is called the index of λi. The subspace Mi = N(A − λiI)li is invariant under A and the

space Cn is the direct sum of the subspace Mi’s for i = 1, ..., p. dim(Mi) is denoted by mi.

Theorem 2.1. 1 (Jordan Canonical Form) Any square matrix A has a nonsingular matrix X

that reduces the matrix to a block diagonal matrix called the Jordan canonical form:

J = X−1AX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J1

J2

. . .

Jp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.12)

where each submatrix Jk corresponds to the subspace Mi associated with the distinct eigenvalue λi

and is of size mi. Each of the blocks has itself a block diagonal structure:

Ji =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ji1

Ji2

. . .

Jiγi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, with Jik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λi 1
. . . . . .

λi 1

λi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.13)
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Each sub-block, refereed to as the Jordan block, is a upper bidiagonal matrix of size not exceeding

li, and corresponds to a different eigenvector associated with the eigenvalue λi.

Each vector can be written uniquely as

x = x1 + x2 + · · · + xp where xi ∈ Mi, (2.14)

and the linear transformation

Pi : x→ xi (2.15)

is a projector onto Mi. The family of projectors Pi for i = 1, ..., p satisfies the following properties:

R(Pi) = Mi, (2.16)

PiPj = PjPi = 0, i �= j, (2.17)

p∑
i=1

Pi = I. (2.18)

Theorem 2.1. 2 Every matrix admits the decomposition

A =
p∑

i=1

(λiPi +Di) (2.19)

where Di = (A− λiI)Pi is a nilpotent operator of index li, i.e., Dli
i = 0.

Proof. From (2.19), we have

APi = λiPi +Di, i = 1, 2, ..., p, (2.20)

which are summed up into

A

p∑
i=1

Pi = A =
p∑

i=1

(λiPi +Di). (2.21)

�

Theorem 2.1. 3 (Schur Canonical Form) Any square matrix A has a unitary matrix Q such

that

QHAQ = R (2.22)

is upper triangular.

Proof. The proof is by induction over the dimension of A. �
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Px

x

Figure 2.1. Oblique projection of x

2.1.5 Projection Operators

2.1.5.1 Range and Null Space

Definition 2.1. 15 A linear mapping from Cn to itself, i.e., such that

P 2 = P, (2.23)

is called a projector.

If P is a projector, so is (I − P ), and the relation

N(P ) = R(I − P ) (2.24)

holds. The space Cn is decomposed as the direct sum

Cn = N(P ) ⊕ R(P ). (2.25)

Conversely, every pair of subspaces M and S which forms a direct sum of Cn defines a unique

projector such that R(P ) = M and N(P ) = S. For any x, the vector Px satisfies the conditions

Px ∈ M and x− Px ∈ S. (2.26)

These relations define a projector P onto M and orthogonal to the subspace L = S⊥.

2.1.5.2 Matrix Representations

The matrix representation of a projector is obtained from two bases, a basis V = [v1, ..., vm] for

the subspace M and and W = [w1, ..., wm] for L. Denoting by V y the representation in the V basis

10



x

Px

Px-x

Figure 2.2. Orthogonal projection of x

of Px, the constraint x− Px ⊥ L is equivalent to the condition

WT (x− V y) = 0, (2.27)

which derives the relation

P = V (WHV )−1WH . (2.28)

If the two bases are biorthogonal, i.e. (vi, wj) = δij , we have y = WHx, which leads to the matrix

representation of the projector P ,

P = VWH . (2.29)

2.1.5.3 Orthogonal and Oblique Projectors

Definition 2.1. 16 The projector P is said to be orthogonal onto M in the case when the subspace

L is equal to M, i.e., when

N(P ) = R(P )⊥, (2.30)

and oblique in the nonorthogonal case.

For any vector x, an orthogonal projector is defined through the condition

Px ∈ M and (I − P )x ⊥ M. (2.31)

A projector is orthogonal if and only if it is Hermitian.
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Ax=Pb

b

r=b-Ax

A

r0

Figure 2.3. Projection of x

2.2 Projection Methods

2.2.1 Projection Methods for Linear Systems

Consider a linear system of equations having n unknowns. If L is the m-dimensional subspace

of the candidate approximants to the problem, m constraints must be imposed to extract an

approximation. A projection technique for the linear system is defined as a process to find an

approximate solution x̃ of the linear system Ax = b,

Find x̃ ∈ x0 + K such that b−Ax̃⊥L, (2.32)

where x0 is an initial guess to the solution. If x̃ is written in the form x̃ = x0 + δ, the approximate

solution can be defined as

x̃ = x0 + δ, δ ∈ K, (2.33)

(r0 −Aδ,w) = 0, ∀w ∈ L. (2.34)

Most standard techniques use a succession of such projections, in which a new projection steps

uses a new pair of subspace K and L, with an initial guess x0 obtained from the previous projection

step.

12



2.2.1.1 Matrix Representation

Let V = [v1, ..., xm] and W = [w1, ..., wm] be n×m matrices, whose column-vectors form the bases

of K and L respectively. If the approximate solution is written as

x̃ = x0 + V y, (2.35)

the orthogonality condition leads to the following system for the vector y:

WTAV y = WT r0. (2.36)

If the matrix WTAV is nonsingular, we have

x̃ = x0 + V (WTAV )−1WT r0. (2.37)

2.2.1.2 Krylov Subspace Methods

A Krylov subspace method for linear systems is a method for which the subspace Km is the Krylov

subspace of dimension m

Km(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0}, (2.38)

where r0 = b−Ax0. The approximations obtained from a Krylov subspace method are of the form

A−1b ≈ xm = x0 + qm−1(A)r0, (2.39)

in which qm−1 is a certain polynomial of degree m− 1.

The choice of Lm will have an important effect on the iterative technique. The first is simply

Lm = Km and the minimum-residual variation Lm = AKm. The second class of methods is based

on defining Lm = Km(AT , r0).

2.2.1.3 Arnoldi’s Method for Linear Systems

We now consider an orthogonal projection method as defined before, which takes L = K =

Km(A, r0), in which r0 = b − Ax0. If Arnoldi vector v1 = r0/ ‖ r0 ‖2 in Arnoldi’s method,

and set β =‖ r0 ‖2, then

V T
mAVm = Hm (2.40)

and

V T
m r0 = V T

m (βv1) = βe1. (2.41)
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Figure 2.4. Projection Methods for Eigenproblems

As a result, the approximate solution using the above m-dimensional subspaces is given by

xm = x0 + Vmym, (2.42)

ym = H−1
m (βe1). (2.43)

2.2.2 Projection Methods for Eigenvalue Problems

A projection method for eigenvalue problems is defined as a technique to approximate the desired

eigenvector u by a vector ũ, belonging to a subspace K, by imposing the above Petrov-Galerkin

condition that the residual vector ũ be orthogonal to another subspace L.

2.2.2.1 Orthogonal Projection Methods

Let K be an m-dimensional subspace of Cn and consider an eigenvalue problem:

Find u ∈ Cn and λ ∈ C such that Au = λu. (2.44)

In an orthogonal projection technique onto the subspace K, the following condition is satisfied,

Aũ− λ̃ũ ⊥ K, (2.45)

for an approximate eigenpair λ̃ and ũ.

Let V = [v1, ..., vm] be n×m matrix, whose column-vectors form the base of K. If the approx-

imate eigenvector is written as

ũ = V y, (2.46)

14
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the Galerkin condition becomes

(AV y − λ̃V y, vj) = 0, j = 1, ...,m. (2.47)

Then y and λ̃ satisfy

By = λ̃y with B = V HAV. (2.48)

B is the matrix representation of the linear transformation Am = PAP , where we denote by P

the orthogonal projector V V H onto the subspace K. The Galerkin condition can be rewritten as

P (Aũ− λ̃ũ) = 0, λ̃ ∈ C, ũ ∈ K, (2.49)

i.e.,

PAũ = λ̃ũ, λ̃ ∈ C, ũ ∈ K. (2.50)

It can be represented as

PAPũ = λ̃ũ, λ̃ ∈ C, ũ ∈ Cn, (2.51)

considering the linear transformation of the original problem.
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Chapter 3

Vector Iterations

For the outline of the methods referred to in this thesis, we begin with the eigensolvers for real

non-Hermite matrices, classified under the concept of vector iterations. See also Golub and Van

Loan [24], Saad [58], or Wilkinson [78] for further studies.

3.1 Single Vector Iterations

3.1.1 The Power Method

Suppose A ∈ Rn×n and denote its eigenvalues by λ1, λ2, · · · , λn.

Theorem 3.1. 1 Suppose that the condition

|λ1| > |λ2| ≥ · · · ≥ |λn| ≥ 0 (3.1)

holds. If we denote by x1 and y1 the right and left eigenvectors of λ1, the sequence

u �= 0, q0 =
u

‖ u ‖2
, qk =

Aqk−1

‖ Aqk−1 ‖2
, k ≥ 1 (3.2)

is such that

|(Aqk, qk) − λ1| = O
(∣∣∣∣λ2

λ1

∣∣∣∣
k
)

(3.3)

if and only if yT
1 u �= 0.

Proof. See Chatelin [10] or Wilkinson [78], for example. �
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3.1.2 The Inverse Iteration

Let σ be an approximation to a simple eigenvalue λ, with right eigenvector x. If σ is not close

to the eigenvalues of A, other than λ, then the dominant eigenvalue of (A − σI)−1 is 1/(λ − σ).

This fact is exploited in the method of inverse iteration designed to compute the eigenvector x

associated with λ whose approximation σ is known. We put

q0 =
u

‖ u ‖2
, (A− σI)zk = qk−1, qk =

zk

‖ zk ‖2
, k ≥ 1. (3.4)

3.2 Subspace Iteration Methods

Suppose a subspace AkS generated by r vectors Aku1, · · · , Akur. The r vectors tend to become

parallel as k → ∞. The subspace iteration method constructs an orthogonal basis Qk of AkS as

follows:

1. U = Q0R0,

2. for k ≥ 1, let Uk = AQk−1 = QkRk,

where the Rk are upper triangular matrices of degree r. Schmidt’s orthogonalization Uk = QkRk

can be carried out by the Householder method (see Appendix B).

The spectrum of the matrix Ak = QH
k AQk of degree r converges to the r dominant eigenvalues

of A.

3.3 The QR Algorithm

3.3.1 Principle of the QR Algorithm

The QR algorithm consists of the construction of a sequence {Ak} of unitarily similar matrices:

A1 = A = Q1R1, Ak+1 = RkQk = Qk+1Rk+1, k ≥ 1 (3.5)

where the Qk are unitary and the Rk are upper triangular matrices. Since Rk = QH
k Ak, we have

Ak+1 = QH
k AkQk = (Q1 · · ·Qk)HA1(Q1 · · ·Qk) (3.6)

and

Ak = Q̂kR̂k, (3.7)
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where

Q̂k = Q1 · · ·Qk, R̂k = Rk · · ·R1. (3.8)

The following results were proved by Francis [18].

Lemma 3.3. 1 Let H be a Hessenberg matrix and let H = QR be its Schmidt factorization. Then

both Q and RQ are Hessenberg matrices.

Theorem 3.3. 1 Under the hypothesis that

|λ1| > |λ2| > · · · > |λn| > 0, (3.9)

the QR algorithm, when applied to an irreducible Hessenberg matrix, produces a sequence of uni-

tary similar Hessenberg matrices which converges (modulo a unitary diagonal matrix) to an upper

triangular matrix whose diagonal consists of the eigenvalues {λi}n
1 in this order.

Theorem 3.3. 2 On the assumption of the previous theorem, the QR algorithm, when applied to

A, produces a sequence of unitary similar matrices whose limit form is an upper triangular matrix

having {λi}n
1 as its diagonal elements in this order, under the necessary and sufficient condition

that the n− 1 principal minors of X−1 are non-zero.

3.3.2 Relation between the Subspace Iteration and the QR algorithm

The QR algorithm is equivalent to the subspace iteration applied to a full set of r = n initial

vectors Q0 = I. We denote by Q̂k the Q matrices of the subspace iteration, in order to distinguish

them from those of the QR algorithm.

The subspace iteration is defined as

Q̂0 = I, (3.10)

Uk = AQ̂k−1, (3.11)

Uk = Q̂kRk, (3.12)

Ak = Q̂H
k AQ̂k, (3.13)

while the QR algorithm by

A0 = A, (3.14)

Ak−1 = QkRk, (3.15)

Ak = RkQk, (3.16)
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where we define Q̂k and R̂k as

Q̂k = Q1Q2 · · ·Qk (3.17)

and

R̂k = RkRk−1 · · ·R1. (3.18)

Theorem 3.3. 3 The above two processes generate identical sequences of matrices R̂k, Q̂k, and

Ak = Q̂kR̂k, (3.19)

with

Ak = Q̂H
k AQ̂k. (3.20)

Proof. The proof is obtained by induction in k. The above processes suggest A0 = Q̂0 = R̂0 = I

and A0 = A, which satisfy the equations (3.19) and (3.20). For the case of k ≥ 1, we need to prove

(3.19) for the subspace iteration, and (3.19) and (3.20) for the QR method. As for the subspace

iteration, the relation is verified by

Ak = AQ̂k−1R̂k−1 = Q̂kRkR̂k−1 = Q̂kR̂k, (3.21)

using the relation (3.11), (3.12), and (3.18).

As for the QR algorithm, we can verify the relation (3.19) by

Ak = AQ̂k−1R̂k−1 = Q̂k−1Ak−1R̂k−1 = Q̂kR̂k, (3.22)

using hypothesis on (3.19) and (3.20), with the relations (3.15), (3.17), and (3.18), while the second

by the sequence

Ak = QH
k Ak−1Qk = Q̂H

k AQ̂k, (3.23)

using the relation (3.15), (3.16), and the hypothesis on (3.20). �

3.3.3 The Shifted QR Algorithm

Suppose A is a real Hessenberg matrix. The QR algorithm with shifts of origin is described by

Qs(As − ksI) = Rs, As+1 = RsQ
T
s + ksI, giving As+1 = QsAsQ

T
s , (3.24)
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where Qs is orthogonal, Rs is upper triangular and ks is the shift of origin. As+2 would be real

even in the case where ks is complex, if we perform the above transformation with shifts ks and k̄s

respectively. Francis also proposed an economical method without using complex arithmetic. If B

is non-singular and

BQ = QH, (3.25)

with unitary Q and upper-Hessenberg H which has positive sub-diagonal elements, it can be shown

that whole of Q and H are determined uniquely by the first column of Q. We have

As(QT
s Q

T
s+1) = (QT

s Q
T
s+1)As+2 (3.26)

and

(QT
s Q

T
s+1)(Rs+1Rs) = (As − ksI)(As − ks+1I). (3.27)

We write

Qs+1Qs = Q, Rs+1Rs = R, (As − ksI)(As − ks+1I) = M. (3.28)

Since QM = R holds, Q is the matrix which triangularizes the matrix product M . The triangu-

larization is performed by the Givens’ method, i.e.,

Q = Rn−1,n · · ·R2,n · · ·R2,3R1,n · · ·R1,3R1,2, (3.29)

where Rij is the plane rotation in the plane (i, j). Its first row is determined by R1,n · · ·R1,3R1,2,

while R1,2, R1,3, · · · , R1,n are determined by the first column of M , whose nonzero elements are

x1 = (a11 − k1)(a11 − k2) + a12a21, y1 = a21(a11 − k2) + (a22 − k1)a21, z1 = a32a21. (3.30)

R1,4, · · · , R1,n are then the identity matrices. If we define C1 by

R1,3R1,2AsR
T
1,2R

T
1,3 = C1 (3.31)

for some orthogonal matrix S1 whose first row is e1 = (1, 0, · · · , 0)T , we have

ST
1 C1S1 = B, (3.32)

where B is an upper Hessenberg matrix. B must be As+2, since the first row of Q̃T = ST
1 R1,3R1,2,

where B = Q̃TAsQ̃, is equal to the first row of QT . These computations can be performed more

efficiently by 8n2 real multiplications.
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Chapter 4

The Arnoldi Process

In this chapter, we present the basic ideas of the Arnoldi process, which is a variant of the Krylov

subspace method. Section 4.1 derives some important properties. The iterative version of the

Arnoldi process is described in Section 4.2.

4.1 Arnoldi’s Method

Suppose A ∈ Rn×n. The Arnoldi approach involves the column-by-column generation of an

orthogonal matrix Q such that QTAQ = H is the Hessenberg reduction. If we write Q as

[q1, ..., qm] ∈ Rn×m and isolate the last term in the summation Aqm =
∑m+1

i=1 himqm, then we

have

hm+1,mqm+1 = Aqm −
m∑

i=1

himqm ≡ rm (4.1)

where him = qT
i Aqm for i = 1, ...,m. We assume that q1 is a given 2-norm starting vector.

Proposition 4.1. 1 The Arnoldi process computes an orthonormal basis for the Krylov subspace

Km(A, q1)

span{q1, ..., qm} = span{q1, Aq1, ..., Am−1q1}, (4.2)

in which the map is represented by an upper Hessenberg matrix Hm.

Proof. The vectors qj for j = 1, 2, ...,m are orthonormal by construction. That they span Km

follows from the fact that each vector vj is of the form pj−1(A)v1 where pj−1 is a polynomial of

degree j − 1, which can be shown by induction on j. �
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Algorithm 4.1. 1 (Arnoldi)

1. h1,1 = (Aq1, q1)

2. for j = 1, ...,m− 1, put

3. rj = Aqj −
∑j

i=1 hijqi, hj+1,j =‖ rj ‖2

4. qj+1 = h−1
j+1rj , hi,j+1 = (Aqj+1, qi), i ≤ j + 1

Proposition 4.1. 2 Denote by Hm the m×m Hessenberg matrix whose nonzero entries are defined

by the algorithm. Then the following relations

AQm = QmHm + rme
T
m (4.3)

QH
mAQm = Hm (4.4)

hold, where em = (0, ..., 0, 1)T .

Proof. (4.3) holds from the equality

Aqj =
j+1∑
i=1

hijqi, j = 1, 2, ...,m. (4.5)

(4.4) follows by multiplying both sides of (4.3). �

The algorithm terminates when rj = 0, which is impossible if the minimal polynomial of A

with respect to q1 is of degree ≥ m. If this condition is satisfied, Hm is an irreducible Hessenberg

matrix.

A complete reduction of A to Hessenberg form can be written as A = QHQH . Consider the first

m < n columns of AQ = QH. Let Qm be the n×m matrix whose columns are the first m columns

of Q, and let H̃m be the (m+ 1)×m upper-left section of Hm+1. We have AQm = Qm+1H̃m and

the mth column of this equation can be written as

Aqm = h1mq1 + · · · + hmmqm + hm+1,mqm+1. (4.6)

Then the vectors {qi} form bases of the successive Krylov subspaces generated by A and b, defined

as

Km = span{b, Ab, ..., Am−1b} = span{q1, q2, ..., qm} ⊆ Cn. (4.7)

Since the vectors qi are orthonormal, these are orthonormal bases. Let us define Km to be a n×m

Krylov matrix

Km = [b, Ab, · · · , Am−1b]. (4.8)
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Then Km have a reduced QR factorization

Km = QmRm, (4.9)

where Qm is the same matrix as above, and might be expected to contain good information about

the eigenvalues of A with largest modulus.

Proposition 4.1. 3 Let yi ∈ Cm be an eigenvector of Hm associated with the eigenvalue λ̃i and

x̃i = Qmyi. Then

(A− λ̃iI)x̃i = hm+1,me
H
myiqm+1 (4.10)

and, therefore,

‖ (A− λ̃iI)x̃i ‖2= hm+1,m|eH
myi|. (4.11)

Proof. (4.10) follows from multiplying both sides of (4.3) by yi. �

4.1.1 Arnoldi and Polynomial Approximation

Let x be a vector in the Krylov subspace Km. Since x can be written as a linear combination of

powers of A times b

x = c0b+ c1Ab+ c2A
2b+ · · · + cm−1A

m−1b, (4.12)

we have

x = q(A)b, (4.13)

where q(z) the polynomial q(z) = c0+c1z+· · ·+cm−1z
m−1. The Arnoldi process solves the problem

Find pm ∈ Pm such that ‖ pm(A)b ‖2= minimum (4.14)

exactly, where we denote by Pm the set of monic polynomials of degree m.

Theorem 4.1. 1 As long as the Arnoldi process does not break down, the problem (4.14) has a

unique solution pm, which is the characteristic polynomial of Hm.
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Figure 4.1. Least squares polynomial approximation

Proof. Let us write p(A)b as p(A)b = Amb−Qmy for some y ∈ Cm. Then ‖ pm(A)b ‖2= minimum

is equivalent to a linear least squares problem

Find y such that ‖ Amb−Qmy ‖2= minimum. (4.15)

The solution is characterized by the orthogonality condition pm(A)b ⊥ Km as illustrated in the

figure 4.1, namely, QHpm(A)b = 0.

At step m of the Arnoldi process, we have computed the first m columns of Q and H. Then a

factorization exists with

Q =
(
Qm U

)
, H =

⎛
⎜⎝ Hm X1

X2 X3

⎞
⎟⎠ (4.16)

for some n× (n−m) matrix U with orthogonal columns that are also orthogonal to the columns of

Qm and some matrices X1,X2, andX3 of dimensions n×(n−m), (n−m)×m, and (n−m)×(n−m),

respectively, with all but the upper-right entry of X2 equal to 0. The orthogonality condition be-

comes QH
mQp

m(H)QHb = 0, which amounts to the condition that the first m entries of the first

column of pm(H) are zero. Because of the structure of H, these are also the first m entries of the

first column of pn(Hm). By the Cayley-Hamilton theorem, these are zero if pm is the characteristic

polynomial of Hm. Conversely, suppose there were another polynomial pm with pm(A)b ⊥ Km.

Taking the difference would give a nonzero polynomial q of degree m− 1 with q(A)b = 0, violating

the assumption that Km is of full rank. �
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Let the Arnoldi process be applied to a matrix A ∈ Cn×n.

Corollary 4.1. 1 (Translation-invariance) If A is changed to A + σI for some σ ∈ C, and b

is left unchanged, then the Ritz values {θj} change to {σ + θj}.

Corollary 4.1. 2 (Scale-invariance) If A is changed to σA for some unitary σ ∈ C, and b is

left unchanged, then the Ritz values {θj} do not change.

Corollary 4.1. 3 (Invariance under unitary similarity transformation) If A is changed

to UAUH for some unitary matrix U , and b is changed to Ub, the Ritz values {θj} do not change.

In all three cases, the Ritz vectors, namely, the vectors Qmyj corresponding to the eigenvectors

yj of Hm, do not change under the indicated transformation.

4.1.2 Block Arnoldi

Suppose that we are interested in computing the r eigenvalues of a matrix A ∈ Rn×n. Assume

that V1 ∈ Rn×r is a rectangular matrix having r orthonormal columns. Then the algorithm of the

block-Arnoldi method can be described as follows:

Algorithm 4.1. 2 (Block Arnoldi)

1. For k = 1, ...,m− 1, do

2. Wk = AVk

3. For i = 1, ..., k, do

4. Hi,k = V T
i Wk; Wk = Wk − ViHi,k

5. QkRk = Wk

6. Vk+1 = Qk; Hk+1,k = Rk

Letting Um = [V1, ..., Vm], the restriction of the matrix A to the Krylov subspace is written as

Hm = UT
mAUm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,1 H1,2 · · · H1,m

H2,1 H2,2 H2,m

0
. . . . . .

...
...

. . .

0 · · · 0 Hm,m−1 Hm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.17)
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The above algorithm gives

AVk =
k∑

i=1

ViHi,k + Vk+1Hk+1,k, k = 1, ...,m, (4.18)

which can be written in a form as

AUm = UmHm + [0, ..., 0, Vm+1Hm+1,m]. (4.19)

Letting Λ̃m = diag(λ̃1, ..., λ̃mr) be the diagonal matrix of eigenvalues of Hm corresponding to the

eigenvectors Ym = [y1, ..., ymr], the above relation gives

AUmYm − UmHmYm = [0, ..., 0, Vm+1Hm+1,m]Ym. (4.20)

If we denote by X̃m = UmYm the matrix of approximate eigenvectors of A and by Ym,r the last r

block of Ym, we have

‖ AX̃m − X̃mΛ̃m ‖2=‖ Hm+1,mYm,r ‖2, (4.21)

which will be used for the stopping criterion in the following numerical evaluation in Appendix A.

4.2 The Arnoldi Iteration

The Arnoldi process, which have the disadvantage of increasing computational complexity per

iteration step, can be improved with the restarting technique, by which the dimensions of the

Krylov subspaces is kept modest (see Saad [55]). In the iterative variant, we start with an initial

vectors V1 and fix a moderate value m, then compute the eigenvectors of Hm. We begin again,

using new starting vectors computed from the approximate eigenvectors.

4.2.1 Explicitly Restarted Arnoldi Iteration

The algorithm of the explicitly restarted Arnoldi iteration is summarized below. The choice of m

is usually a tradeoff between the length of the reduction that may be tolerated and the rate of

convergence. The accuracy of the Ritz values typically increases as m does. For most problems,

the size of m is determined experimentally.

Algorithm 4.2. 1 (Explicitly Restarted Arnoldi)

1. Choose V1 ∈ Rn×r

2. For j = 1, ...,m− 1, do
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3. Wj = AVj

4. For i = 1, ..., j, do

5. Hi,j = V T
i Wj ; Wj = Wj − ViHi,j

6. QjRj = Wj ; Vj+1 = Qj ; Hj+1,j = Rj

7. Compute the eigenvalues of Hm = (Hi,j) ∈ Rmr×mr and select {λ̃1, ..., λ̃r} of

largest real parts

8. Stop if their Ritz vectors X̃0 = [x̃1, ..., x̃r] satisfy the convergence criteria

9. Define the iteration polynomial ψk(λ) of degree k by Sp(Hm) − {λ̃1, ..., λ̃r}

10. X̃k = ψk(A)X̃0; QkRk = X̃k; V1 = Qk

4.2.2 Other Approaches

The ARPACK software package by Lehoucq and Sorensen [36] implements an implicitly restarted

Arnoldi method. The scheme is called implicit because the starting vector is updated with an

implicitly shifted QR algorithm on the Hessenberg matrix Hm. This method is motivated by the

following result:

Let AVm = VmHm + rme
T
m be a length m Arnoldi method and φ(·) a polynomial of degree

p = m− k where k < m. Since

φ(A)Vk = Vmφ(Hm)[e1, e2, ..., ek] (4.22)

holds, if we compute the QR factorization of φ(Hm)[e1, e2, ..., ek] = QkRk then the columns of

VmQk are an orthogonal basis for R(φ(A)Vk), where we denote by R(A) the range of matrix A.

We give the basic algorithm as implemented by ARPACK below. Note that the convergence

rate of the method does not depend on the distribution of the spectrum.

Algorithm 4.2. 2 (Implicitly Restarted Arnoldi)

1. Build a length m Arnoldi method AVm = VmHm + rme
T
m with the starting vector

v1

2. Until convergence, do

3. Compute the eigensystem HmSm = SmDm ordered with the k wanted eigen-

values located in the leading portion of the quasi-diagonal matrix Dm

4. Perform m− k = p steps of the QR iteration with the unwanted eigenvalues of
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Dm as shifts to obtain HmQm = QmH
+
m

5. Restart: Postmultiply the length m Arnoldi method with Qk to obtain the

length k Arnoldi method AVmQk = VmQkH
+
k + r+k e

T
k (Qk represents the matrix con-

sisting of the leading k columns of Qm, and H+
k is the leading principal submatrix of

degree k of H+
m)

6. Extend the length k Arnoldi method to a length m one

4.3 Polynomial Accelerations Techniques

Suppose A ∈ Rn×n is a diagonalizable matrix with eigensolutions (xj , λj) for j = 1, ..., n. Letting

ψ(·) be some polynomial, the current starting vector v1 can be expanded as ψ(A)v1 = x1ψ(λ1)ζ1 +

· · · + xnψ(λn)ζn in terms of the basis of eigenvectors. Then if we assume that the eigenvalues

are ordered so that the wanted k ones are located at the beginning of the expansion, we seek

a polynomial such that maxi=k+1,...,n |ψ(λi)| < mini=1,...,k |ψ(λi)|, where the components in the

direction of unwanted eigenvectors are dumped.

The acceleration techniques attempt to improve the restarted Arnoldi iteration by solving this

min-max problem, where a Chebyshev polynomial ψ(A) on an ellipse containing the unwanted Ritz

values is applied to the restart vector to accelerate convergence of the restarted Arnoldi iteration.

The full theory on these techniques will be described in Chapter 5 and 6.
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Chapter 5

Polynomial Acceleration

The idea of using preconditioners has been developed for solving linear equations to improve

the properties of problems. Although it has been developed more recently, preconditioning is

an effective approach for eigenvalue problems. We present some important properties for basic

iterative methods in Section 5.1 and introduce the ideas of the polynomial acceleration in the

preceding sections.

5.1 General Theory

5.1.1 Basic Iterative Methods and Their Rates of Convergence

Consider a linear system of n equations

Ax = b. (5.1)

Definition 5.1. 1 For a vector x, the residual of (5.1) is denoted by

r = r(x) = Ax− b. (5.2)

A basic iterative method is written in the form

Cdl+1 = rl, xl+1 = xl + dl+1, l = 0, 1, 2, ... (5.3)

where rl = Axl − b is the residual and dl is the correction at stage l. x0 is an arbitrary initial

approximation and C is called the preconditioning matrix, which is chosen variously for accelerating

convergence. A = C −R is called a splitting of A and (5.3) can be rewritten as

Cxl+1 = Rxl + b, l = 0, 1, 2, ... (5.4)
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Lemma 5.1. 1 For an arbitrary square matrix A,

lim
k→∞

Ak = 0 ⇐⇒ ρ(A) < 1. (5.5)

Theorem 5.1. 1 The sequence of vectors xl in (5.4) converges to the solution if and only if

ρ(C−1R) < 1.

Proof. Letting B be the iteration matrix B = C−1R and el = x − xl, we have Cel+1 = Rel and

em = Bme0 by recursion. By Lemma 5.1.1, we have em → 0, m→ ∞ if and only if ρ(B) < 1. �

Definition 5.1. 2 ‖ Bm ‖ is called the convergence factor for m steps and Rm =‖ Bm ‖ 1
m is

called the average convergence factor for this norm.

Definition 5.1. 3 rm = − log10Rm is called the average rate of convergence and r =

−log10ρ(B) = − log10R∞ is called the asymptotic rate of convergence.

5.1.2 Stationary Iterative Methods

Definition 5.1. 4 A first-order iterative method for the solution of Ax = b is defined by

Cdl+1 = −τlrl, xl+1 = xl + dl+1, l = 0, 1, ..., (5.6)

where {τl} is a sequence of parameters. If τl = τ, l = 0, 1, 2, ..., then the method is called stationary

and otherwise nonstationary.

Definition 5.1. 5 A second-order method is defined by

Csl = rl, xl+1 = αlxl + (1 − αl)xl−1 − βlsl, l = 0, 1, ..., (5.7)

where {αl}, {βl} are sequences of parameters with α0 = 1.

Letting el = x− xl the errors, we have

el+1 = (I − τlA)el (5.8)

from the above result and

em = Πm−1
l=0 (I − τlA)e0 = Pm(A)e0 (5.9)
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rm = Pm(A)r0 (5.10)

for some polynomial Pm of degree m such that Pm(0) = 1. Similar relations hold for the second-

order iterative method. Then we have

‖ em ‖2=‖ Pm(A)e0 ‖2≤‖ Pm(A) ‖2‖ e0 ‖2= max
1≤j≤n

|Pm(λj)| ‖ e0 ‖2 (5.11)

(see Dunford and Schwartz [15]).

Definition 5.1. 6 Let A be s.p.d (symmetric positive definite). The weighted vector-norm is de-

fined by

‖ x ‖Aν = (xTA2νx)
1
2 , (5.12)

where ν is a real number.

Theorem 5.1. 2 Assume that C and A are s.p.d. and consider the first-order stationary method

with a fixed parameter τ . If we assume that C−1A has eigenvalues λj with extreme eigenvalues

λ1, λn where 0 < λ1 < λn, the method converges if 0 < τ < 2/λn.

Proof. The former part is the consequence of the relations

em = Pm(C−1A)e0 = (I − τC−1A)me0 (5.13)

and

‖ em ‖
A

1
2
/ ‖ e0 ‖

A
1
2
≤ ρ(I − τC− 1

2AC− 1
2 )m = max{|1 − τλ1|, |1 − τλn|}m. (5.14)

Note that the minimum value of ρ(I − τC− 1
2AC− 1

2 )m is taken for τ = 2/(λ1 + λn), which follows

from

min
τ
ρ(I − τA− 1

2CA− 1
2 ) = min

τ
{|1 − τλ1|, |1 − τλn|} = (1 − λ1/λn)/(1 + λ1/λn), (5.15)

where 1 − τλ1 = τλn − 1 holds. �

Similar results can be obtained for the second-order iterative method.

Theorem 5.1. 3 Assume that the eigenvalues λi of C−1A are positive, with extreme eigenvalues

λ1, λn, λ1 < λn. If we consider a stationary iterative method with the fixed parameters α, β, the
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method converges if and only if 0 < α < 2, 0 < β < 2α/λn and the asymptotic convergence factor

is smallest and equal to

(αopt − 1)
1
2 =

(
1 −
√

1 − ρ2
0

1 +
√

1 − ρ2
0

) 1
2

=
1 −
√

λ1
λn

1 +
√

λ1
λn

(5.16)

for

α = αopt =
2

1 + (1 − ρ2
0)

1
2
, β = βopt =

2α
λ1 + λn

(5.17)

where ρ0 = [1 − λ1/λn] / [1 + λ1/λn].

Proof. See Axelsson [3]. �

5.2 The Chebyshev Iterative Method

5.2.1 The First-Order Chebyshev Iterative Method

Consider a first-order iterative method

xl+1 = xl − τl(Axl − b) (5.18)

where A is s.p.d. The smallest spectral radius

ρ(I − τA) = (1 − λ1/λn)/(1 + λ1/λn) (5.19)

is taken with τ = 2/(λn + λ1).

We consider to choose a suitable set of parameters {τl} to accelerate the convergence by mini-

mizing the norm ‖ ep ‖Aν of the errors ep = x− xp after p iterations, that is,

ep = Qp(A)e0, (5.20)

where

Qp(ζ) = Πp−1
l=0 (1 − τlζ), (5.21)

Then we have

‖ ep ‖Aν≤‖ Qp(A) ‖Aν‖ e0 ‖Aν . (5.22)

32



Since

‖ Qp(A) ‖Aν = max
y �=0

‖ Qp(A)y ‖
‖ y ‖ = max |μi| (5.23)

where {μi} are the eigenvalues of Qp(A), we have

‖ Qp(A) ‖Aν = max
i

|Qp(λi)| (5.24)

to be minimized. So we can simplify the approximation problem to the corresponding problem

‖ Qp(A) ‖Aν = max
i

|Qp(λi)| ≤ max
λ1≤ζ≤λn

|Qp(ζ)| (5.25)

for the continuous interval.

Theorem 5.2. 1 The least maximum of (5.25) is achieved by the Chebyshev polynomials, namely,

min
Qp∈π1

p

max
λ1≤ζ≤λn

|Qp(ζ)| = max
λ1≤ζ≤λn

∣∣∣Tp

(
λn+λ1−2ζ

λn−λ1

)∣∣∣
Tp

(
λn+λ1
λn−λ1

)
=

1

Tp

(
λn+λ1
λn−λ1

) , (5.26)

where π1
p is the set of polynomials of degree at most p which take the values unity at the origin,

and Tp is the Chebyshev polynomial of first kind

Tp(ζ) =
1
2

[
(ζ +

√
ζ2 − 1)p + (ζ −

√
ζ2 − 1)p

]
. (5.27)

Proof. Let

R(ζ) = Qp(0)
Tp

(
λn+λ1−2ζ

λn−λ1

)
Tp

(
λn+λ1
λn−λ1

) −Qp(ζ) (5.28)

be a polynomial of degree p, which takes on zero at ζ = 0. If we assume that

max
λ1≤ζ≤λn

|Qp(ζ)/Qp(0)| < max
λ1≤ζ≤λn

∣∣∣∣Tp

(
λn + λ1 − 2ζ
λn − λ1

)∣∣∣∣ . (5.29)

R(ζ) changes sign in each interval (ζi, ζi+1), since Tp((λn + λ1 − 2ζi)/(λn − λ1))) = (−1)i, where

ζi = cos(iπ/k), and maxλ1≤ζ≤λn

∣∣∣Tp

(
λn+λ1−2ζ

λn−λ1

)∣∣∣ = 1. So R(ζ) has p zeros in addition to the zero

at ζ = 0, which is in contradiction to its degree p. Hence assumption (5.29) is false, which proves

the theorem. �
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By the relation (5.21), the optimal parameters τl are given by

τl =
1

λn−λ1
2 cos θl + λn+λ1

2

, θl =
2l + 1

2p
π, l = 0, 1, ..., p− 1. (5.30)

Since the extreme eigenvalues are not known, lower and upper bounds a(a > 0) and b of these

eigenvalues are used in practice. Consequently, we can see that

min
Qp∈π1

p

max
λ1≤ζ≤λn

|Qp(ζ)| =
1

Tp

(
λn+λ1
λn−λ1

) = 2
σp

1 + σ2p
(5.31)

where σ = (1 −
√
λ1/λn)/(1 +

√
λ1/λn), and that the asymptotic average reduction rate is

limp→∞(min max |Qp(ζ)|)
1
p = σ. Thus, for any ε, 0 < ε < 1,

‖ ep ‖Aν

‖ e0 ‖Aν

≤ ε (5.32)

holds if

2
σp

1 + σ2p
≤ ε, (5.33)

which holds for p ≥ p∗ where

p∗ = ln

(
1
ε

+

√
1
ε2

− 1

)
/ lnσ−1. (5.34)

If we assume that ε� 1 and λn/λ1 � 1,

p∗ ≤ �ln 2
ε
/ lnσ−1� ≤ 1

2

(
λn

λ1

) 1
2

ln
2
ε
. (5.35)

The above technique can be applied to the first order iterative method with a preconditioning

matrix C, if C−1A has positive eigenvalues. Note that the number of iterations increases at most

as the square root of the condition number of C−1A.

5.2.2 The Second-Order Chebyshev Iterative Method

For the second-order iterative method, the parameter sets {αl, βl} of

xl+1 = αlxl + (1 − αl)xl−1 − βlrl, l = 1, 2, ..., (5.36)

x1 = x0 −
1
2
β0r0. (5.37)

can be determined independently of rounding errors.
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By comparing the relation

Ql+1(A) − αlQl(A) + βlAQl(A) + (αl − 1)Ql−1(A) = 0, l = 1, 2, ... (5.38)

with the recursion formula

T0(z) = 1, T1(z) = z, Tl+1(z) − 2zTl(z) + Tl−1(z) = 0, l = 1, 2, ... (5.39)

for the Chebyshev polynomials, we can derive a Chebyshev iteration method

Ql(A) = Tl(Z)/Tl(b̃), Z =
1

b− a
[(b+ a)I − 2A], (5.40)

where

αl =
2b̃Tl(b̃)
Tl+1(b̃)

= 1 +
Tl−1(b̃)
Tl+1(b̃)

, βl =
4

b− a

Tl(b̃)
Tl+1(b̃)

, (5.41)

and

0 < a ≤ λ1, b ≥ λn, b̃ = (b+ a)/(b− a). (5.42)

The parameters are defined by the following recursions:

al =
a+ b

2
βl, βl =

1
a+b
2 −

(
b−a
4

)2
βl−1

, l = 1, 2, ..., (5.43)

β0 = 4/(a+ b). (5.44)

Note that the sequence {βl} decreases monotonically and converges to β̃ = 4/(
√
b+

√
a)2, l → ∞,

which is equal to the optimal parameter βopt in the stationary second-order method.

5.2.3 The Chebyshev Iterative Method for Nonsymmetric Matrices

Assume that the spectrum of a real nonsymmetric matrix A is contained in an ellipse in the

righthalf complex plane,

S =
{
ζ | ζ =

b+ a

2
− b− a

2
(cos θ + iδ sin θ)/

√
1 − δ2, 0 ≤ θ ≤ 2π

}
, 0 < a < b (5.45)

where (a, 0) and (b, 0) are the foci of the ellipse, δ is the eccentricity. Since the ellipse does not

contain the origin, we have

δ <
2
√

a
b

1 + a
b

(5.46)
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from the relation (b+ a)/2 > (b− a)/(2
√

1 − δ2). Note that for δ = 0, S is the interval [a, b].

The transformation

P1(ζ) = z =
b+ a− 2ζ
b− a

(5.47)

takes the given ellipse S into a new ellipse

E = {z | z = (cos θ + iδ sin θ)/
√

1 − δ2, 0 ≤ θ ≤ 2π}, (5.48)

the foci of which are (−1, 0) and (1, 0). Letting ρ1 =
√

[(1 + δ)/(1 − δ)], we have

E = {z | z =
1
2
(ρ1 + ρ−1

1 ) cos θ + i
1
2
(ρ1 − ρ−1

1 ) sin θ =
1
2
(ρ1e

iθ + ρ−1
1 e−iθ), 0 ≤ θ ≤ 2π}. (5.49)

Consider the Chebyshev polynomial

Tk(z) =
1
2
{[z +

√
z2 − 1]k + [z +

√
z2 − 1]−k}, (5.50)

which is a polynomial of degree k in z ∈ C. Then

Tk(z) =
1
2
(ρk

1e
ikθ + ρ−k

1 e−ikθ) (5.51)

and

max
z∈E

|Tk(z)| =
1
2
(ρk

1 + ρ−k
1 ), (5.52)

where the maximum is taken for θ = 0, for example. Therefore, we get

max
z∈E

|Tk(z)| = Tk(
ρ1 + ρ−1

1

2
) = Tk(

1√
1 − δ2

). (5.53)

Note that the parameters

τl =
1

b−a
2 cos θl + b+a

2

, θl =
2l + 1

2p
π, l = 0., , , .p− 1 (5.54)

for the first-order method and those given in theorem for the second-order method are same as for

the real interval [a, b], corresponding to δ = 0. Considering the normalized polynomial, we find the

average asymptotic convergence factor

ρ ≤ lim
k→∞

{
max
ζ∈S

|Tk(P1(ζ))|
|Tk(P1(0))|

} 1
k

= lim
k→∞

⎧⎨
⎩

Tk( 1√
1−δ2 )

Tk

(
(b+a)/(b−a)
(b+a)(b−a)

)
⎫⎬
⎭

1
k

= lim
k→∞

ρ1

Tk(α)
1
k

=
ρ1

α+
√
α2 − 1

, (5.55)
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of the corresponding iterative method, where

α =
b+ a

b− a
, ρ1 =

1 + δ√
1 − δ

. (5.56)

Thus, we get

ρ ≤ 1 + δ√
1 − δ2

(
1 −
√
a

b

)(
1 +
√
a

b

)
. (5.57)

Note that ρ < 1 holds under the above condition on δ. Since the factor ρ gives only the asymptotic

rate of convergence

(
‖ rk ‖
‖ r0 ‖

) 1
k

→ ρ, k → ∞. (5.58)

The convergence may not be monotone for nonsymmetric problems.

5.3 Optimal Parameters for the Chebyshev Polynomials

5.3.1 The Mini-Max Problem

Consider the equivalent form of the Chebyshev polynomials (5.27)

Tp(z) = cosh(p cosh−1(z)) (5.59)

and let F(δ, ϑ) be the member of the family of ellipses in the complex plane centered at δ with the

focal points at δ + ϑ and δ − ϑ, where δ and ϑ are complex numbers.

Lemma 5.3. 1 Suppose zi ∈ Fi(0, 1) and zj ∈ Fj(0, 1). Then we have

Re (cosh−1(zi)) < Re (cosh−1(zj)) ⇔ Fi(0, 1) ⊂ Fj(0, 1), (5.60)

Re (cosh−1(zi)) = Re (cosh−1(zj)) ⇔ Fi(0, 1) = Fj(0, 1). (5.61)

Proof. See Manteuffel [38]. �

For the scaled and translated Chebyshev polynomials Pn(ζ) = Tn((δ − ζ)/ϑ)/Tn(δ/ϑ), we can

see that

Pn(ζ) =
en cosh−1( δ−ζ

ϑ ) + e−n cosh−1( δ−ζ
ϑ )

en cosh−1( δ
ϑ ) + e−n cosh−1( δ

ϑ )

.= en cosh−1( δ−ζ
ϑ )−n cosh−1( δ

ϑ ) (5.62)
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for large n, using the definition of the cosh. Therefore, letting

ρ(ζ) = lim
n→∞

|Pn(ζ)
1
n | (5.63)

be the asymptotic convergence factor of Pn(ζ) at the point ζ, we get

ρ(ζ) = eRe (cosh−1( δ−ζ
ϑ )−cosh−1( δ

ϑ )). (5.64)

From the Lemma 5.3.1 and the above definition,

ρ(ζi) < ρ(ζj) ⇔ Fi(δ, ϑ) ⊂ Fj(δ, ϑ), (5.65)

ρ(ζi) = ρ(ζj) ⇔ Fi(δ, ϑ) = Fj(δ, ϑ), (5.66)

ρ(ζ) = 1 ⇔ ζ ∈ F̂(δ, ϑ) (5.67)

holds, where ζi ∈ Fi(δ, ϑ), ζj ∈ Fj(δ, ϑ) and F̂(δ, ϑ) is the member of the family passing through

the origin. Thus, we have

lim
n→∞

Pn(ζ) =

⎧⎪⎨
⎪⎩

0 ζ is inside of F̂(δ, ϑ)

∞ ζ is outside of F̂(δ, ϑ)
. (5.68)

The following theorem is useful for the subsequent discussion.

Theorem 5.3. 1 There exists a unique polynomial tn ∈ π1
n such that

max
ζ∈T

|tn(ζ)| = min
sn∈π1

n

max
ζ∈T

|sn(ζ)|, (5.69)

where T is a closed and bounded infinite set in the complex plane.

Proof. See Hille [29]. �

If the region is bounded by an ellipse E with real foci δ + ϑ and δ − ϑ that does not contain the

origin in its interior, we have the following result.

Theorem 5.3. 2 Let 0 < ϑ ≤ a ≤ δ. If tn ∈ π1
n satisfies the above condition then

tn(ζ) = Pn(ζ) =
Tn( δ−ζ

ϑ )
Tn( δ

ϑ )
. (5.70)

Proof. See Clayton [11]. �

The result remains asymptotically true when δ and ϑ are complex values:

Proposition 5.3. 1

lim
n→∞

min
sn∈π1

n

max
ζ∈E

|sn(ζ)|1/n = lim
n→∞

max
ζ∈E

|Pn(ζ)|1/n. (5.71)
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Proof. We begin by showing that

min
ζ∈E

|Pn(ζ)| ≤ min
sn∈π1

n

max
ζ∈E

|sn(ζ)| ≤ max
ζ∈E

|Pn(ζ)|. (5.72)

The inequality on the right is trivial. Suppose that the inequality on the left is false:

min
sn∈π1

n

max
ζ∈E

|sn(ζ)| ≤ min
ζ∈E

|Pn(ζ)|. (5.73)

It implies that

min
sn∈π1

n

sn(ζ) ≤ Pn(ζ) (5.74)

when ζ ∈ E . By Rouchés theorem, Pn(ζ) − minsn∈π1
n
sn(ζ) has as many zeros in the interior of

E as minsn∈π1
n
sn(ζ). Pn(ζ) has n zeros on the segment joining the foci δ − ϑ and δ + ϑ. On

the other hand, Pn(0) − minsn∈π1
n
sn(0) = 0 where the origin is exterior to E , which proves that

Pn − minsn∈π1
n
sn is the zero polynomial, since its degree does not exceed n and it has at least

n+ 1 distinct zeros. Thus Pn(ζ) = minsn∈π1
n
sn(ζ) on E , which contradicts our hypothesis. �

If we use the log form of cosh−1

cosh−1(w) = ln(w + (w2 − 1)
1
2 ), (5.75)

we have

ρ(ζ) =

∣∣∣∣∣ (
δ−ζ

ϑ ) + (( δ−ζ
ϑ )2 − 1)

1
2

( δ
ϑ ) + (( δ

θ )2 − 1)
1
2

∣∣∣∣∣ =
∣∣∣∣∣ (δ − ζ) + ((δ − ζ)2 − ϑ2)

1
2

δ2 + (δ2 − ϑ2)
1
2

∣∣∣∣∣ (5.76)

and, by (5.20), the mini-max problem for a matrix A with eigenvalues λi is written as

min
δ,ϑ

max
λi

ρ(λi) = min
δ,ϑ

max
λi

∣∣∣∣∣ (δ − λi) + ((δ − λi)2 − ϑ2)
1
2

δ2 + (δ2 − ϑ2)
1
2

∣∣∣∣∣ . (5.77)

Definition 5.3. 1 Let H = {λi | λiis a vertex of the smallest convex polygon enclosing the spectrum of A}

and H+ = {λi ∈ H | Im (λi) ≥ 0}.

Lemma 5.3. 1 The mini-max problem can be written in the form

max
λi

ρ(λi, δ, ϑ) = max
λi∈H

ρ(λi, δ, ϑ) = max
λi∈H+

ρ(λi, δ, ϑ). (5.78)

Proof. The lemma holds from (5.67). �
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5.3.2 The Mini-Max Solution

For the above mini-max problem, we use the following theorem from the functional analysis.

Theorem 5.3. 3 (Alternative Theorem) Let {fi(x, y)} be a finite set of the real valued func-

tions of two real variables, each of which is continuous on a closed and bounded region S, and

let

m(x, y) = max
i
fi(x, y). (5.79)

Then m(x, y) takes on a minimum at some point (x0, y0) in the region S. If (x0, y0) is in the

interior of S, one of the following holds:

1. The point (x0, y0) is a local minimum of fi(x, y) for some i, such that m(x0, y0) = fi(x0, y0).

2. The point (x0, y0) is a local minimum among the locus {(x, y) ∈ S | fi(x, y) = fj(x, y)} for

some i and j, such that m(x0, y0) = fi(x0, y0) = fj(x0, y0).

3. The point (x0, y0) is such that m(x0, y0) = fi(x0, y0) = fj(x0, y0) = fk(x0, y0)forsomei,jandk.

Proof. See Bartle [6]. �

Denote by ζ0 the smaller intersection point of the ellipse and the real axis. Since ρ(ζ, δ, ϑ2) takes

on the same value at each ζ ∈ Fi(δ, ϑ),

ρ(λi, δ, ϑ
2) = ρ(ζ0, δ, ϑ2) =

(δ − ζ0) + ((δ − ζ0)2 − ϑ2)
1
2

δ + (δ2 − ϑ2)
1
2

. (5.80)

Note that if we let (δ − ζ0)2 = a2,

ρ(λi, δ, ϑ
2) =

a+ (a2 − ϑ2)
1
2

δ + (δ2 − ϑ2)
1
2
,

(δ − xi)2

a2
+

y2
i

a2 − ϑ2
= 1. (5.81)

We have the following results for the problem (see Manteuffel [37]):

1. Suppose the positive hull H+ contains only one eigenvalue λ1 = x1 + iy1. Then the only

local minimum of the function ρ(λ1, δ, ϑ
2) occurs at δ = x1, ϑ

2 = −y2
1 , that is, the member

of the family passing through λ1 is the degenerate ellipse. In this case, we have

ρ(λ1, x1,−y2
1) =

y1

x1 + (x2
1 + y2

1)
1
2
. (5.82)
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2. Suppose the positive hull H+ contains two eigenvalues λ1 = x1 + iy1 and λ2 = x2 + iy2. The

Alternative Theorem yields that the solution must occur along the intersection of the two

surfaces

ρ(λ1, δ, ϑ
2) = ρ(λ2, δ, ϑ

2) (5.83)

using the relation

ρ(λ1, x1,−y2
1) < ρ(λ2, x1,−y2

1) (5.84)

ρ(λ1, x2,−y2
2) > ρ(λ2, x2,−y2

2). (5.85)

Since λ1 and λ2 satisfy the equation of the same member of ellipses,

(δ − x1)2

a2
+

y2
1

a2 − ϑ2
= 1 (5.86)

(δ − x2)2

a2
+

y2
2

a2 − ϑ2
= 1. (5.87)

Let

A =
x2 − x1

2
, B =

x2 + x1

2
, S =

y2 − y1
2

, T =
y2 + y1

2
(5.88)

and assume that x2 > x1. If S = 0, then

δ = B, ϑ2 =
a2(a2 − (A2 + T 2))

a2 −A2
. (5.89)

If S �= 0, then

ϑ2 =
(δ − (B + ST

A ))(δ − (B −AT
S ))(δ − (BAS

T ))
δ −B

(5.90)

a2 = (δ − (B −A
T

S
))(δ − (B −A

T

S
)). (5.91)

If S = 0, the only local minimum is found in terms of y = a2 as the only real root of the

cubic polynomial

q1y
3 + q2y

2 + q3y + q4 = 0 (5.92)

in the interval (A2, B2), where coefficients are

q1 = B2 + T 2, (5.93)

q2 = −3A2B2, (5.94)

q3 = 3A4B2, (5.95)

q4 = −A4B2(A2 + T 2). (5.96)
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If S �= 0, then the only local minimum can be found in terms of z = δ−B as the root of the

polynomial

p1z
5 + p2z

4 + p3z
3 + p4z

2 + p5z + p6 = 0 (5.97)

in the interval

(0, A) for S > 0

(−A, 0) for S < 0. (5.98)

where the coefficients are

p1 = (2B −A(
T

S
+
S

T
))(2B +

ST

A
−A(

T

S
+
S

T
)), (5.99)

p2 = (2B +
ST

A
−A(

T

S
+
S

T
))((2AB + ST )(

T

S
+
S

T
) + 4A2)

+B2(2B −A(
T

S
+
S

T
)) +B(B2 −A2), (5.100)

p3 = 4A2 − 4A3B(
T

S
+
S

T
) +A2ST ((

T 3

S3
+
S3

T 3
) − 3(

T

S
+
S

T
))

+A2B2(
T 2

S2
+
S2

T 2
+ 3), (5.101)

p4 = AST ((B −A
T

S
)(B − 3A

T

S
) + (B −A

S

T
)(B − 3A

S

T
)), (5.102)

p5 = −3A3ST (2B −A(
T

S
+
S

T
)), (5.103)

p6 = −3A3ST (B2 −A2). (5.104)

The best point is called a pair-wise best point and the associated ellipse is called the pair-wise

best point. Its convergence factor is as in (5.81).

3. Suppose that the positive hull H+ contains three or more eigenvalues. Since the mini-max

solution must be a pair-wise best point or a point of intersection of three surfaces, the pair-

wise best point of λ1 and λ2 is the mini-max solution if and only if the pair-wise best ellipse

contains the other eigenvalues in the closure of its interior. Let λ1 = x1 + iy1, λ2 = x2 + iy2,

and λ3 = x3 + iy3, where x1 < x2 < x3, be the three eigenvalues in the positive hull. Then

there is the unique point (δ, ϑ2) such that

ρ(λ1, δ, ϑ
2) = ρ(λ2, δ, ϑ

2) = ρ(λ3, δ, ϑ
2) (5.105)

only if

(x2 − x1)(y2
3 − y2

1) < (x3 − x1)(y2
2 − y2

1), (5.106)
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where the parameters are

δ =
1
2
y2
1(x2

2 − x2
3) + y2

2(x2
3 − x2

1) + y2
3(x2

1 − x2
2)

y2
1(x2 − x3) + y2

2(x3 − x1) + y2
3(x1 − x2)

, (5.107)

a2 = δ2 − y2
1x2x3(x2 − x3) + y2

2x1x3(x3 − x1) + y2
3x1x2(x1 − x2)

y2
1(x2 − x3) + y2

2(x3 − x1) + y2
3(x1 − x3)

, (5.108)

ϑ2 = a2

(
1 − y2

1(x2 − x3) + y2
2(x3 − x1) + y2

3(x1 − x2)
(x1 − x2)(x2 − x3)(x3 − x1)

)
. (5.109)

Such a point, referred to as a three way point, can be the mini-max solution only if the

associated ellipse passing through λ1, λ2, and λ3, referred to as a three-way ellipse, contains

the spectrum in the closure of its interior. Its convergence factor is as in (5.81).

Algorithm 5.3. 1 (Chebyshev Acceleration)

1. For each pair of eigenvalues in the positive hull, find the pair-wise best point

2. If the pair-wise best point contains the other members of the positive hull in the

closure of its interior, then it is the mini-max solution

3. If no pair-wise best point is the solution, find the three-way point, if it exists, for

each set of three eigenvalues in the positive hull

4. If the associated three-way ellipse contains the other members of the positive hull

in the closure of its interior, this point is a candidate

5. The three-way candidate with the smallest convergence factor is the mini-max

solution

5.4 The Chebyshev Arnoldi Method

5.4.1 Application to the Nonsymmetric Eigenproblems

We consider here the application of the above restarting techniques to the Arnoldi process. Al-

though the drawbacks of the Arnoldi process can be solved by using the method iteratively as was

seen in Chapter 4, in some cases the minimum number of the steps m that must be performed in

each inner iteration in order to ensure convergence of the process becomes too large.

These difficulties may be overcome by taking a large enough m, but it can become expensive

and impractical. In order to avoid these shortcomings, we consider the use of the iterative Arnoldi

process in conjunction with the Chebyshev iteration. The main part of this hybrid algorithm is

a Chebyshev iteration, which computes a vector of the form zi = pi(A)z0, where we denote by pi
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a polynomial of degree i and by z0 an initial vector. The polynomial pi is chosen to amplify the

components of z0 in the direction of the wanted eigenvectors, while damping those of the unwanted

eigenvectors. Once zi = pi(A)z0 is computed, a few steps of the Arnoldi iteration, starting with

an initial vector v1 = zi/ ‖ zi ‖, are carried out in order to extract the wanted eigenvectors.

5.4.2 The Chebyshev Iteration

Assume that the parameters of the best mini-max polynomial

pn(ζ) =
Tn( ζ−ϑ

δ )

Tn( ζ1−ϑ
δ )

(5.110)

is given beforehand. Letting ρn = Tn((ζ1 − ϑ)/δ) for n = 0, 1, · · ·, we have

ρn+1pn+1(ζ) = Tn+1

(
ζ − ϑ

δ

)
= 2

ζ − ϑ

δ
ρnpn(ζ) − ρn−1pn−1(ζ), (5.111)

which can be transformed into

pn+1(ζ) = 2σn+1
ζ − ϑ

δ
pn(ζ) − σnσn−1(ζ) (5.112)

by setting σn+1 = ρn/ρn+1, where σi, i = 1, 2, · · · is computed from the recursion

σ1 =
δ

λ1 − ϑ
, (5.113)

σn+1 =
1

2/σ1 − σn
, n = 1, 2, .... (5.114)

The basic algorithm for the Chebyshev iterative method is as follows:

Algorithm 5.4. 1 (Chebyshev Iteration)

1. Choose an arbitrary initial vector z0

2. σ1 = δ
ζ−ϑ

3. z1 = σ1
δ (A− ϑI)z0

4. For n = 1, 2, · · ·, do

5. σn+1 = 1
2/σ1−σn

6. zn+1 = 2σn+1
δ (A− ϑI)zn − σnσn+1zn−1

The algorithm of the Chebyshev Arnoldi Method is as follows:

Algorithm 5.4. 2 (Chebyshev Arnoldi)
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1. Choose an orthonormal set of r initial vectors V1, a number of Arnoldi steps m, and

a number of Chebyshev steps n

2. Until Convergence, do

3. Perform the m steps of the Arnoldi algorithm starting with V1

4. Compute the m eigenvalues of the resulting Hessenberg matrix Hm and select

the r wanted eigenvalues λ̃1, ..., λ̃r

5. If satisfied stop, otherwise continue

6. Using Sp(Hm)− {λ̃1, ..., λ̃r}, obtain the new estimates of the parameters δ and

ϑ of the best ellipse

7. Compute the sequence of r initial vectors Z0 for the Chebyshev iteration from

the approximate eigenvectors x̃1, ..., x̃r

8. Perform n steps of the Chebyshev iteration to obtain Zn

9. Take V1 as the orthonormalized vector set computed from Zn and go back to 1
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Chapter 6

Least Squares Based Polynomial Acceleration

The choice of ellipses as enclosing regions in Chebyshev acceleration presented in Chapter 5 is overly

restrictive and ineffective, especially when the shape of the convex hull of the unwanted eigenvalues

bears little resemblance to an ellipse (see Smolarski and Saylor [65] for various examples). In this

chapter, we introduce the idea of acceleration using the least squares polynomials, and propose an

efficient method for determining its parameters to solve this problem.

We begin with some definitions of notations in Section 6.1. The mini-max polynomial, which

can be derived from the definition of a new norm on the boundary, is introduced and combined

with the Arnoldi method as an accelerator in Section 6.2.

6.1 Basic Approach

Let T be a simply connected region in the complex ζ-plane.

Theorem 6.1. 1 (The Maximum Principle) If a function f(ζ) is defined and continuous on

a closed bounded set T and analytic on the interior of T , then the maximum of |f(ζ)| on T is

assumed on the boundary of T .

Proof. See Ahlfors [1], for example. �

Using the above property, we can regard the mini-max problem introduced in Chapter 5 as

being defined on the boundary of the region which contains the spectrum. Let the boundary C of

the region be a continuum consisting of a finite number of rectifiable Jordan arcs. The integrals
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considered will have the form

∫
C

f(ζ)|dζ|, (6.1)

where f(ζ) is a Lebesgue-integrable function defined on C and |dζ| is the arc element on C.

Definition 6.1. 1 The scalar product of two functions f(ζ) and g(ζ), ζ on C, is defined by the

integral

〈f, g〉 =
∫

C

f(ζ)ḡ(ζ)w(ζ)|dζ|. (6.2)

We introduce here the least squares residual polynomial minimizing an L2 norm with respect to

some weight w(ζ) on the boundary of a convex hull formed from the approximate eigenestimates.

Note that the constraint pn(ζ) ∈ π1
n is not necessary for the eigenproblems (see Section 6.3).

The contour considered here is the finite union of line segments:

Definition 6.1. 2 Denote by H the convex hull constituted from the μ vertices h0, · · · , hμ, and by

ϑν =
1
2
(hν + hν−1) (6.3)

δν =
1
2
(hν − hν−1), (6.4)

the center and the half width on each edge Cν , ν = 1, 2, ..., μ, respectively. We can define the

Chebyshev weight

wν(ζ) =
2
π

[
δ2ν − (ζ − ϑν)2

]− 1
2 , ζ ∈ Cν (6.5)

on each edge Cν , and the inner product

〈p, q〉 =
∫

C

p(ζ)q̄(ζ)w(ζ)|dζ| (6.6)

≡
μ∑

ν=1

∫
Cν

p(ζ)q̄(ζ)wν(ζ)|dζ| =
μ∑

ν=1

〈p, q〉ν (6.7)

on the boundary C. A norm is defined by ‖ p ‖2
w= 〈p, p〉.

Thus, we can rewrite the problem as

min
p∈πn

max
ζ∈H

|p(ζ)| = min
p∈πn, ζ∈C

‖ p(ζ) ‖w . (6.8)

An algorithm using explicitly the modified moments 〈ti(ζ), tj(ζ)〉, where {tj} is some suitable

basis of polynomials, is developed for the problem of computing the least squares polynomials in
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the complex plane. The set of Chebyshev polynomials suitably shifted and scaled is reasonable as

the basis {tj} rather than the power basis {1, ζ, ζ2, · · · , ζn−1}, which forces unstable computation.

However, the matrix Mn whose elements mi,j are defined by

mi,j = 〈tj−1, ti−1〉, i, j = 1, 2, ..., n+ 1 (6.9)

is still likely to become increasingly ill-conditioned as its size n+ 1 increases.

We express the polynomial tj(ζ) in terms of the Chebyshev polynomials

tj(ζ) =
j∑

i=0

ϕ
(ν)
i,j Ti(ξν) where ξν =

ζ − ϑν

δν
is real. (6.10)

The expansion coefficients ϕ(ν)
i,j can be computed easily from the three term recurrence of the

polynomials

βk+1tk+1(ζ) = (ζ − αk)tk(ζ) − γktk−1(ζ). (6.11)

6.2 Least Squares Arnoldi

In this section, we propose a new algorithm to get the mini-max polynomial for the accelerating

the Arnoldi iteration.

We can orthogonalize the system and lead to a set of polynomials {pn(ζ)}, where

(a) pn(ζ) is a polynomial of degree n in which the coefficients of ζn is real and positive;

(b) the system {pn(ζ)} is orthonormal, that is,∫
C

pn(ζ)p̄m(ζ)w(ζ)|dζ| = δnm, n,m = 0, 1, 2, .... (6.12)

Definition 6.2. 1 Let f(ζ) be a continuous function defined on C and let there correspond the

formal Fourier expansion

f(ζ) ∼ f0p0(ζ) + f1p1(ζ) + · · · + fnpn(ζ) + · · · . (6.13)

The coefficients fn, called the Fourier coefficients of f(ζ) with respect to the given system, are

defined by

fn = 〈f, pn〉 =
∫

C

f(ζ)p̄n(ζ)w(ζ)|dζ|, n = 0, 1, 2, ... (6.14)

Theorem 6.2. 1 (Bessel’s Inequality) The partial sums sn(ζ) of (6.13) minimize the integral∫
C

|f(ζ) − ρ(ζ)|2w(ζ)|dζ| (6.15)
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if ρ(ζ) ranges over the class of all πn. The minimum is∫
C

|f(ζ)|2w(ζ)|dζ| − |f0|2 − |f1|2 − · · · |fn|2. (6.16)

This also yields Bessel’s inequality

|f0|2 + |f1|2 + · · · + |fn|2 ≤‖ f(ζ) ‖w=
∫

C

|f(ζ)|2w(ζ)|dζ|. (6.17)

Proof. For any finite system of complex numbers c0, c1, c2, ..., cn, we have∣∣∣∣∣
∣∣∣∣∣f −

n∑
i=1

cipi

∣∣∣∣∣
∣∣∣∣∣
2

w

=

(
f −

n∑
i=1

cipi, f −
n∑

i=1

cipi

)

= ‖ f ‖2
w −

n∑
i=1

cif̄i −
n∑

i=1

c̄ifi +
n∑

i=1

|ci|2

= ‖ f ‖2
w −

n∑
i=1

|fi|2 +
n∑

i=1

|fi − ci|2 (6.18)

by orthonormality of {pn}. Since the minimum of (6.18) is attained when ci = fi (i = 1, 2, ..., n),

we have ‖ f −
∑n

i=1 cipi ‖2
w, and hence

∑n
i=1 |fi|2 ≤‖ f ‖2

w. �

The Theorem 6.2.1 has the following important consequence:

Corollary 6.2. 1 (Nishida 1994) An orthonormal system {pn(ζ)} satisfies the condition (6.8).

Using the above properties of orthogonal polynomials, we can describe the new method to

generate the coefficients of the ortho-normal polynomials

pn(ζ) =
n∑

i=0

ϕ
(ν)
i,nTi

(
ζ − ϑν

δν

)
, (6.19)

in terms of the Chebyshev weight.

From the condition (6.12) of orthonormality on p(ζ), we have

〈p0, p0〉 =
μ∑

ν=1

〈p0, p0〉ν = 2
μ∑

ν=1

∣∣∣ϕ(ν)
0,0

∣∣∣2 = 1, (6.20)

〈p1, p1〉 =
μ∑

ν=1

〈p1, p1〉ν =
μ∑

ν=1

[
2
∣∣∣ϕ(ν)

0,1

∣∣∣2 +
∣∣∣ϕ(ν)

1,1

∣∣∣2] = 1, (6.21)

〈p0, p1〉 =
μ∑

ν=1

〈p0, p1〉ν = 2
μ∑

ν=1

ϕ
(ν)
0,0ϕ̄

(ν)
1,1 = 0 (6.22)

on C. From (6.20), we have

∣∣∣ϕ(ν)
0,0

∣∣∣ = 1
2μ
, ν = 1, 2, ..., μ, (6.23)
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and we can choose 1/
√

2μ as ϕ(ν)
0,0 .

Note that each expansion of pi(ζ) at any edge must be consistent. The consistency of

p1(ζ) = ϕ
(ν)
0,1 + ϕ

(ν)
1,1(ζ − ϑν)/δν = (ϕ(ν)

1,1/δν)ζ + ϕ
(ν)
0,1 − ϕ

(ν)
1,1ϑν/δν (6.24)

between any edges Cν and Cν′ where ν �= ν′ derives the relation

ϕ
(ν)
1,1/δν = ϕ

(ν′)
1,1 /δν′ , (6.25)

ϕ
(ν)
0,1 − ϕ

(ν)
1,1ϑν/δν = ϕ

(ν′)
0,1 − ϕ

(ν′)
1,1 ϑν′/δν′ , (6.26)

which can be rewritten as

ϕ
(ν)
1,1 = δνt, ϕ

(ν)
0,1 − ϑνt = ϕ

(ν′)
0,1 − ϑν′t (6.27)

where t is a real number. The condition (6.22) yields the relations

μ∑
ν=1

(
ϕ

(ν)
0,1 − ϑνt

)
= −

μ∑
ν=1

ϑνt = μ
(
ϕ

(ν′)
0,1 − ϑν′t

)
, 1 ≤ ν′ ≤ μ, (6.28)

which derives

ϕ
(ν)
0,1 = ϑνt−

(
μ∑

ν′=1

ϑν′

)
t/μ. (6.29)

Putting (6.29) into (6.22), we get

2
μ∑

ν=1

∣∣∣∣∣ϑν −
(

μ∑
ν′=1

ϑν′

)
/μ

∣∣∣∣∣
2

t2 +
μ∑

ν=1

|δν |2 t2 = 1, (6.30)

which determines the value of t as

t =
1√
S
, S =

μ∑
ν=1

⎡
⎣2

∣∣∣∣∣ϑν −
(

μ∑
ν′=1

ϑν′

)
/μ

∣∣∣∣∣
2

+ |δν |2
⎤
⎦ . (6.31)

Thus, we can compute the values of all the coefficients of the polynomial using the values of

δν , ϑν ,and μ.

Using the expansion (6.10) and (6.19), the three term recurrence

βk+1pk+1(ζ) = (ζ − αk)pk(ζ) − γkpk−1 (ζ) (6.32)

on the pi(ζ) can be rewritten as

βk+1pk+1(ζ) = (δνξν + ϑν − αk)
k∑

i=0

ϕ
(ν)
i,k Ti(ξν) − γk

k−1∑
i=0

ϕ
(ν)
i,k−1Ti(ξν). (6.33)
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From the relations

ξνTi(ξν) =
1
2

[Ti+1(ξν) + Ti−1(ξν)] for i > 0, ξνT0(ξν) = T1(ξν), (6.34)

(6.33) is expressed by

∑
ϕiξνTi(ξν) =

1
2
ϕ1T0(ξν) +

(
ϕ0 +

1
2
ϕ2

)
T1(ξν) + · · ·

+
1
2
(ϕi−1 + ϕi+1)Ti(ξν) + · · · + 1

2
(ϕn−1 + ϕn+1)Tn(ξν), ϕn+1 = 0, (6.35)

which is arranged into

βn+1pn+1(ζ) = δν

[
ϕ

(ν)
1,n

2
T0(ξν) +

(
ϕ

(ν)
0,n +

ϕ
(ν)
2,n

2

)
T1(ξν) + · · · +

n∑
i=2

(
ϕ

(ν)
i−1,n

2
+
ϕ

(ν)
i+1,n

2

)
Ti(ξν)

]

+ (ϑν − αn)
n∑

i=0

ϕ
(ν)
i,nTi(ξν) − γn

n−1∑
i=0

ϕ
(ν)
i,n−1Ti(ξν), T−1 = T1. (6.36)

Proposition 6.2. 1 Comparing this equation with (6.19), we find the following relations

βn+1ϕ
(ν)
0,n+1 =

1
2
δνϕ

(ν)
1,n + (ϑν − αn)ϕ(ν)

0,n − γnϕ
(ν)
0,n−1, (6.37)

βn+1ϕ
(ν)
1,n+1 = δν

(
ϕ

(ν)
0,n +

ϕ
(ν)
2,n

2

)
+ (ϑν − αn)ϕ(ν)

1,n − γnϕ
(ν)
1,n−1, (6.38)

βn+1ϕ
(ν)
i,n+1 = δν

(
ϕ

(ν)
i+1,n

2
+
ϕ

(ν)
i−1,n

2

)
+ (ϑν − αn)ϕ(ν)

i,n − γnϕ
(ν)
i,n−1, i = 2, ..., n+ 1, (6.39)

where

ϕ
(ν)
−1,n = ϕ

(ν)
1,n, ϕ

(ν)
i,n = 0 for i > n. (6.40)

From (6.32) and the orthogonality of the Chebyshev polynomials, we can derive

βk+1 = 〈pk+1, pk+1〉1/2

=
μ∑

ν=1

∫
Cν

pk+1p̄k+1wν(ζ)|dζ|

=
μ∑

ν=1

′∑k+1

i=0
ϕ

(ν)
i,k+1ϕ̄

(ν)
i,k+1, (6.41)

denoting by
∑′ a modified sum

∑′n
i=0ai = 2a0 +

∑n
i=1 ai.

α and γ are computed by

αk = 〈ζpk, pk〉 =
μ∑

ν=1

⎛
⎝ϑν

′∑k

i=0
ϕ

(ν)
i,k ϕ̄

(ν)
i,k + δν

′∑k

i=0
ϕ

(ν)
i,k ϕ̄

(ν)
i+1,k

⎞
⎠ , (6.42)

γk = 〈ζpk, pk−1〉 =
μ∑

ν=1

δνυν , (6.43)
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where

υν = ϕ
(ν)
1,kϕ̄

(ν)
0,k−1 +

(
ϕ

(ν)
0,k +

ϕ
(ν)
2,k

2

)
ϕ̄

(ν)
1,k−1 +

k−1∑
i=2

(
ϕ

(ν)
i−1,k

2
+
ϕ

(ν)
i+1,k

2

)
ϕ̄

(ν)
i,k−1. (6.44)

The polynomial obtained in the above procedure is applied to a matrix of the problem in the

following way.

p0(A)v0 = ϕ
(ν)
0,0Iv0, 1 ≤ ν ≤ μ, (6.45)

p1(A)v0 = ϕ
(ν)
0,1Iv0 + ϕ

(ν)
1,1/δν · (A− ϑνI)v0, (6.46)

pi+1(A)v0 = [(A− αiI)pi(A)v0 − γipi−1(A)v0] /βi+1. (6.47)

Denoting pi(A)v0 by wi, the above recurrence is transformed into

w0 = ϕ
(ν)
0,0v0, (6.48)

w1 = ϕ
(ν)
0,1v0 + ϕ

(ν)
1,1/δν · (Av0 − ϑνv0) =

(
ϕ

(ν)
0,1 − ϕ

(ν)
1,1ϑν/δν

)
v0 + ϕ

(ν)
1,1/δν ·Av0, (6.49)

wi+1 = [Awi − αiwi − γiwi−1] /βi+1, i = 2, ..., nT . (6.50)

6.3 Other Approaches

Consider the problem

min
s∈πn−1

‖ 1 − (ζ − λ1)sn(ζ) ‖w, (6.51)

which is to find η = (η0, η1, · · · , ηn−1)T of sn(ζ) =
∑n−1

i=0 ηiti(ζ) so that

J(η) =‖ 1 − (ζ − λ1)sn(ζ) ‖w (6.52)

is minimum (see Saad [57, ?]). The polynomial

ζsn(ζ) =
n−1∑
i=0

ηi [βi+1ti+1(ζ) + αiti(ζ) + γiti−1(ζ)] (6.53)

is represented in the basis ti for i = 0, 1, · · · , n by the vector Tnη where Tn is the n + 1 by n

tridiagonal matrix

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 γ1

β1 α1 γ2

β2 α2
. . .
. . . γn−1

. . . αn−1

βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.54)
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We have

J(η)2 = [e1 − (Tn − λ1I)η]
H
Mn [e1 − (Tn − λ1I)η] (6.55)

where e1 = (1, 0, · · · , 0)T and the coefficients of the moment matrix are given by

mi+1,j+1 = 2 Re

[
μ∑

ν=1

(
2ϕ(ν)

0,j ϕ̄
(ν)
0,i +

i∑
k=1

ϕ
(ν)
k,j ϕ̄

(ν)
k,i

)]
, i = 0, 1, ..., j. (6.56)

Let Mn = LLT be the Choleski factorization of Mn. Then we can compute the minimum of

J(η) =‖ LT [e1 − Tnη] ‖ . (6.57)

As will been seen in Chapter 7, this approach requires some excessive computation.
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Chapter 7

Implementation

7.1 Modeling

7.1.1 The Least Squares Arnoldi Method

We begin with the complexity of the QR algorithm. We use the number of multiplications as the

measure of complexity. The QR algorithm requires 4n2 multiplications in one complete step, where

we denote by n the degree of the matrix. The double-shifted QR algorithm, which we use for our

problem, requires 8n2 multiplications in one step in which the two shifts concerning a conjugate

pair are performed (see Wilkinson [78]). Hence, denoting the number of the steps of the QR

algorithm by nQR, we see that 4n2nQR real multiplications are necessary to solve the eigenvalue

problem of the matrix A, which can roughly estimated at 10n3 (see Golub and Van Loan [24]).

The complexity of the Arnoldi method with the re-orthogonalization, which uses the QR algo-

rithm to compute the eigenvalues of the Hessenberg matrix, is estimated using the above result.

It follows the algorithm of the simultaneous least squares Arnoldi method.

We require in the rth step of the computation of hir, i = 1, · · · , r + 1,

n2 + 2nr + 2nr + n (7.1)

real multiplications. The total complexity required to obtain the Hessenberg matrix H of degree

m is, therefore,

mn2 + 2m(m+ 1)n+ (m− 1)n

= mn2 + (2m2 + 3m− 1)n (7.2)
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real multiplications. Adding this to the computation of the eigenvalues of H by the QR algorithm,

the complexity of the Arnoldi method is approximately given by

mn2 + (2m2 + 3m− 1)n+ 10m3 (7.3)

real multiplications.

The evaluation of the complexity of the least squares Arnoldi method is as follows:

1. The computation of the eigenvalue estimates requires

mn2 + (2m2 + 3m− 1)n+ 10m3 (7.4)

real multiplications.

2. Suppose that we have μ vertices for the convex hull. The computation of the coefficients ϕ(ν)
i,j

requires

μ(6 +
k∑

n=1

(3 + 4 + 3n)) ≈ μ[
3
2
k2 +

17
2
k] (7.5)

complex multiplications where k is the degree of the polynomial. Each complexity of the

other coefficients i.e., β, α, and γ, is

μ
k∑

i=2

(i+ 1) ≈ μ[k2 + 3k], (7.6)

μ

k−1∑
i=1

[(i+ 1) + (i+ 1)] ≈ μ[2k2 + 6k], (7.7)

μ{
k−1∑
i=1

[1 + 1 + 2 + 2(i− 2)]} = μ[2k2 − 2k] (7.8)

complex multiplications, respectively. The total number of the complex multiplications is

approximately

1
2
μ[13k2 + 31k]. (7.9)

3. The polynomial iteration requires

n+ 1 + n+ n2 + (k − 1)(n2 + n+ n) ≈ kn2 + 2kn (7.10)

complex multiplications.
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The total computation of the least squares Arnoldi method for an iteration consists of the sum

of those of the three parts, i.e.,

mn2 + (2m2 + 3m− 1)n+ 10m3 (7.11)

real multiplications and

kn2 + 2kn+
1
2
μ[13k2 + 31k] (7.12)

complex multiplications.

Moreover, denoting the number of nonzero entries in A by nnz and the number of required

eigenvalues in the block Arnoldi iteration by r, the cost of the block Arnoldi can be defined as

O(rmnnz +m2r2n) flops. 10r3m3 flops are required for the computation of the eigenvalues of Hm

of degree mr by the QR algorithm, r3O(m2) for the corresponding eigenvectors by the inverse

iteration, and 2kr nnz +O(n) for the polynomial acceleration. The computation of the coefficients

costs approximately O(μk2) flops, where μ is the number of the vertices of the convex hull. Table

7.1 shows that the complexity of the least squares Arnoldi is roughly O(n2), while that of the QR

algorithm is O(n3).

7.1.2 The Additional Cost of the Saad’s Method

The complexity of Saad’s method is more large. We need the additional computation of the least

squares polynomial using the mini-max polynomials of degree i = 0, · · · , n, which are obtained by

our method, as an ortho-normal basis.

The computation of the elements of the matrix M requires
n∑

j=0

j∑
i=0

(i+ 1) =
1
6
(n+ 1)(n+ 2)(n+ 3) (7.13)

complex multiplications. We need 1
3n(n − 1)(n + 1) multiplications to decompose M into LLT .

We compute then the optimal η∗ which makes

J(η) =‖ LT [e1 − Tnη] ‖=‖ l11e1 − Fnη ‖ (7.14)

minimum by deforming Fn into an upper triangular matrix by the plane rotations. The plane

rotations require
∑n

i=1 i = n(n+1)/2 real multiplications. The η is determined by the least squares

method. The total superfluous cost of the computation of the least squares polynomial is then

1
6 (n+1)(n+2)(n+3) complex multiplications and 1

3n(n−1)(n+1)+ 1
2n(n+1) = 1

6n(n+1)(2n+1)

real multiplications.
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7.1.3 The Complexity of the Manteuffel’s Method

The complexity of the computation of the best ellipse is rather complicated. It depends on the

distribution of the eigenvalues obtained by the Arnoldi method and classified into several cases.

1. When a pair-wise best point is the mini-max solution, the required computation per a pair

of eigenvalues is at most 7 real multiplications and the solution of a cubic equation, if the

imaginary parts of the two points are equal. If they are not, 78 real multiplications and the

solution of the equation of the fifth degree are required. Moreover we need the judgment

whether the other eigenvalues are in the ellipse or not. The number of pairs is 1
2m(m − 1)

where we denote by m the number of the eigenvalues.

2. If no pair-wise best point is the solution, we need the computation of the candidate ellipse for

every combination of three points, which contains 48 real multiplications for 1
6m(m−1)(m−2)

combinations. Then the ellipse with the smallest convergence factor must be chosen.

The complexity of the Newton’s method for the nonlinear equations depends on the initial value.

Considering that it is used for every combination of the eigenvalues, we can conclude that the least

squares Arnoldi method, whose complexity of the corresponding part is O(μk2) is better.

7.1.4 Other Arguments

The speed of linear convergence of the QR algorithm is controlled by maxr=1,···,n−1

∣∣∣λr+1
λr

∣∣∣. With

shifts of origin, the convergence of a(k)
nn to an eigenvalue is asymptotically quadratic.

The study of the convergence of the Arnoldi method is far less sufficient than that of the Lanczos

method, since the theory of the uniform approximation on a compact set in the complex plane is

not so advanced (see Chatelin [10]).

7.2 Numerical Results

We solved some test problems from the Harwell-Boeing sparse matrix collection (see Duff, Grimes

and Lewis [14]), the computed spectra of which are shown in Figure A.7 in Appendix A, using

the block Arnoldi iteration. Manteuffel’s algorithm was used for reference. Table 7.2 and Table

7.3 indicate that our algorithm shows better performance than Manteuffel’s method in the cases

where the moduli of the wanted eigenvalues are considerably larger than those of the unwanted

eigenvalues.
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Table 7.4 shows the comparative results on the ARNCHEB package by Braconnier [9], the

ARPACK software package by Lehoucq and Sorensen [36], and the Harwell Subroutine Library

code EB13 by Scott [63] and Sadkane [60]. ARNCHEB provides the subroutine ARNOL, which

implements the explicitly restarted Arnoldi iteration and the Chebyshev polynomial acceleration.

EB13 implements the similar algorithm and also uses Manteuffel’s Chebyshev polynomial acceler-

ation. ARPACK provides subroutine DNAUPD that implements the implicitly restarted Arnoldi

iteration.

From the results of Table 7.4, we can derive the strong dependency of the polynomial acceler-

ation on the distribution of spectrum. Figure A.7 indicates that the non-clustered distribution of

spectra causes the slow convergence, since the approximate spectra may completely differ from the

accurate ones. Although ARNCHEB gives reasonable results for computing a single eigensolution,

it can struggle on problems for which several eigenvalues are requested. ARPACK displays mono-

tonic consistency and is generally faster and more dependable for small convergence tolerances and

large departures from normality. However, its restarting strategy can be more expensive.

maximum least squares Arnoldi Arnoldi QR

eigenvalues niter m k error time niter m error time error time

2 2 5 15 3.6E–15 0.38 2 15 8.9E–16 0.57 5.1E–15 1.87

1.5 3 5 20 3.0E–15 0.70 3 15 3.7E–15 0.82 3.6E–15 1.85

1.1 5 10 20 2.9E–14 1.6 1 50 7.5E–13 3.93 5.2E–15 18.8

Table 7.1. Random matrices of degree 50, for the cases of λmax = 2, 1.5, and 1.1, while the distribution

of the other eigenvalues is Re λ ∈ [0, 1], and Im λ ∈ [−1, 1]. m, k, and niter denote the degree of the

Arnoldi method, the maximum degree of the Chebyshev polynomials, and the number of the iterations,

respectively. CPU times (in seconds) by HP9000/720.

7.3 Parallelization of the QR algorithm

The above results on the complexity of our method indicate the necessity of more efficient compu-

tation of the Arnoldi iteration. Although the speed of convergence increases which the subspace

size m is chosen larger, the number of floating-point operations, and therefore the time required

by the algorithm, rapidly increases with the subspace dimension m. To avoid QR to become a

bottleneck, we propose here a new data mapping method and a schedule of the computation for
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problem WEST0497 WEST0655 WEST0989 WEST2021

degree of matrix 497 655 989 2021

number of entries 1727 2854 3537 7353

number of multiplications 924 440 275 120 13751 * 767 320

number of restarts 14 10 3 2 162 * 12 7

CPU time (sec.) 0.37 0.22 0.17 0.12 8.71 * 1.28 0.67

Table 7.2. Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection,

which was extracted from modeling of chemical engineering plants. The results by Manteuffel’s algorithm

(right) versus those by the least squares Arnoldi method (left), with size of the basis 20, degree of the

polynomial 20, and block size 1, respectively, are listed. * denotes the algorithm fails to converge. CPU

time by Alpha Station 600 5/333.

degree of matrix 2000 4000 6000 8000 10000

number of entries 5184 8784 12384 15984 19584

number of multiplications 589 240 393 180 236 140 393 380 236 80

number of restarts 7 4 5 3 3 2 5 7 3 1

CPU time (sec.) 0.83 0.43 1.24 0.70 1.23 0.85 2.57 2.81 2.14 0.97

Table 7.3. Test problems from TOLOSA extracted from fluid-structure coupling (flutter problem). Size of

the basis, degree of the polynomial, and block size are 20, 20, 1, respectively.

Algorithm r = 1, m = 8 r = 5, m = 20

EB12 * 98/20930

ARNCHEB 8.6/3233 71/15921

EB13 17/4860 18/4149

ARPACK 3.7/401 2.1/167

Algorithm r = 1, m = 12 r = 4, m = 20

EB12 0.6/423 9.1/2890

ARNCHEB 3.4/1401 4.7/1712

EB13 0.4/119 1.3/305

ARPACK 0.5/90 1.3/151

Table 7.4. CPU times by IBM RS/6000 3BT and matrix-vector products for computing the right-most

eigenvalues of WEST2021 (left) and PORES2 of degree 1224 (right). * denotes convergence not reached

within 2000m matrix-vector products. We denote by r the block size and by m the subspace dimension.
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the parallel Hessenberg double shifted QR algorithm on distributed memory processors.

The parallelization of non-Hermitian eigenproblem is not commonly studied. A MIMD parallel

implementation of the Arnoldi method is implemented and mentioned in Petiton [50] for both

tightly coupled as well as loosely coupled memory machines with vector elementary processors and

large granularity. This study has already shown that the QR algorithm is the most significant

bottleneck on these MIMD architectures. The speed of convergence for such methods usually

increases which the subspace size m is chosen larger. The number of floating-point operations,

and therefore the time required by the algorithm, rapidly increases with subspace dimension m.

Furthermore, m must be taken as small as possible to avoid QR to become a bottleneck.

Henry and van de Geijn [27] show that under certain conditions the described approach is

asymptotically 100% efficient. It is impossible to find an implementation with better scalability

properties, since for maintaining a given level of efficiency the dimension of the matrix must grow

linearly with the number of processors. Therefore, it will be impossible to maintain the performance

as processors are added, since memory requirements grow with the square of the dimension, and

physical memory grows only with the number of processors. They also show that for the standard

implementation of the sequential QR algorithm, it is impossible to find an implementation with

better scalability properties.

0 1
2 3

4
5

0
1

2

3

4

5

Figure 7.1. The proposed data mapping method

Figure 7.1 shows the data mapping, where the number of the processors p = 6. This method is

based on the partition of the matrix into 2p×2p blocks. The mapping is similar to the block Hankel-

wrapped storage scheme in that the matrix is partitioned into 2p strips along the subdiagonal, and

60



that each processor owns two strips at an interval of p. However, the strips are shifted left by 1.5

blocks, and this shift makes the loads near the diagonal so light that the lookahead step can be

executed at the same time with the updates of the previous block transformation. We use a half

block as a unit of computation: A half block is the computation of the rotations of a half block.

We assume that each computation of the lookahead step and the column rotations of a diagonal

block, whose nonzero elements are about a half of a block, is a half block. The time taken to

execute the computation of a half block is a quarter, because each processor has four half blocks

of computations in a block transformation.

1 234 12

3

41

2 3

41

2 3

41

234234 1

column rotation

row rotation

next pivot

current pivot

quarter of a step1..4

Figure 7.2. Allocation of the computations

Figure 7.2 shows the schedule of the computations in the fourth block transformation. Each

processor has four half blocks of computations and the order of the computations is shown with

the number 1 to 4. The arrows depict the required communication. The long arrows from the

diagonal block stand for the broadcast of the transformations. The lookahead step is executed

by the processor 5 in the third quarter. Therefore, there is time of a quarter from the end of a

lookahead step to the beginning of the transformations that use the results of the lookahead step,

and it becomes possible to hide the latency of the broadcast of the transformations. The column

rotation of the diagonal block was done in the first quarter. The row rotations in a processor are

executed from right to left and the column rotations in a processor are executed from bottom to

top, because the results of the half blocks at the right and the bottom must be sent to the next

processors. With this ordering, at least two quarters of time are available to hide the latency of

each communication.
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We suppose here infinitely large n and p, and ignore lower order terms. In our data mapping,

two strips have been allocated to each processor cyclically. The strips can be subdivided into some

narrower strips, which will be allocated to the processors in cyclic or block mapping. Assume

that the matrix is partitioned into 2bp strips and B = n/2bp transformations are bundled. The

subdivided strips are allocated to the processors in the block-cyclic fashion, and each processor

owns 2h block-strips. Note that 1 ≤ h ≤ b ≤ n/2p. In our algorithm, the following five overheads

becomes significant in larger problems:

1. Load Imbalance. The major load imbalance of the parallel double shift QR method is the

first lookahead step, which takes O(B2) = O(n2/b2p2) time.

2. Broadcasts. Since the results of the look-ahead steps are broadcasted, the transfer time is

larger than the startup time for larger problems. Assuming the circular broadcast method,

the overhead time is O(hn).

3. Border Data Exchanges. A data exchange occurs at border when a rotation requires the data

allocated to two different processors. The total amount of the exchanged data is O(hn) for

a processor, which is the order of the total border length.

4. Loop Overhead. The core routine of the QR algorithm is a double loop and the performance

is affected by the inner loop length. This overhead is evaluated as O(hn), which is the outer

loop count.

5. Data Redistribution. Data redistribution is required before executing the Francis steps.

In the worst case, the time consumption for the data redistribution is O(n2), which is the

number of the matrix elements. Since the double shifted QR algorithm requires O(n) Francis

iterations, the overhead per Francis iteration is O(n).

From the above considerations, the overhead per Francis step of our method is O(n2/b2p2+hn),

which is minimized to O(n) by letting h = O(n) and b = O(n/p), where the subdivided strips

are allocated in a block fashion and the size of the subdivided blocks are constant. Since the

overhead is O(n) and the load per processor is O(n2/p), constant parallel efficiency is obtained

with p = O(n). Therefore, our scheme attains the best possible scalability of the double shifted

QR algorithm.
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The graph in Figure 7.3 shows the parallel performance of our program without matrix size

reduction on a Fujitsu AP1000+, a distributed memory multicomputer system with 256 Super-

Sparc10 processors (50 MHz). The graph shows the relation between Mflops per processor and

n/p with several values for p. The peak performance of the Hessenberg double shift QR algorithm

on a single processor of AP1000+ is about 20.8 Mflops, using unrolling and tiling. Therefore, the

parallel efficiency of 50% is attained with n/p < 40, and the parallel efficiency becomes 90% with

n/p ≈ 150. Such high parallel efficiency has rarely been observed in preceding researches on the

parallel double shifted QR algorithms (see Henry and van de Geijn [27]), or the parallel multishift

QR algorithms (see Henry, Watkins and Dongarra [28]), considering its minimum parallelizing

overhead of O(n5/4/p1/2) for n ≥ p and O(n/p1/4) for n < p, from which we can see that our

algorithm will be faster for n > O(p2).
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Figure 7.3. The Mflops per processor versus n/p for first iterations. The broken lines in the left figures

indicate the boundaries of the blocks, and the solid lines show the boundaries of the elements allocated to

different processors. The numbers indicate to which processor each region should be allocated.
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Chapter 8

Conclusion

In this thesis, we proposed a least squares based accelerating method for the restarted Arnoldi

iteration. In our method, an accelerating polynomial is chosen to minimize an L2 norm of the

polynomial on the boundary of the convex hull, with respect to the Chebyshev weight function.

The proof of the minimum property of the orthogonal polynomials defined on the norm was given

in Chapter 6.

We estimated the complexity of the least squares Arnoldi in Chapter 7. The complexity of the

least squares based acceleration is given by O(μk2) flops, which is less than those of the Chebyshev

acceleration, where the solutions of simultaneous nonlinear equations are required, and the Saad’s

approach, which needs O(k3) additional cost. The validity of our method was confirmed by the

experiments using a set of standard test matrices for sparse matrix problems, such as the Harwell-

Boeing Sparse Matrix Collection, in Chapter 7 and Appendix A.

The number of floating point operations rapidly increases with the size of the subspace dimen-

sion m and it indicates that we need to take m as small as possible if we want to avoid QR to

become a bottleneck, as shown in Chapter 7. We proposed a new data mapping method with

best possible scalability for the parallelization of the double shifted QR algorithm, in which the

loads including the lookahead step are balanced, and the computations are pipelined by hiding

the communication latency. Our implementation on a Fujitsu AP1000+ attains parallel efficiency

higher than 90% without matrix size reduction, and 70–80% for the whole process including the

matrix size reduction. The integration of the these two approaches is the current problem.
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Appendix A

Numerical Results

This chapter reports the results of the numerical experiments of our method and evaluates its

performance.

A.1 Treatment of the Computational Error

The shortcoming of the method is expected to be the computational error of the eigenvalues

distributed closely. We propose several countermeasures for the difficulty. Numerical results are

reported in the subsequent chapter.

A.1.1 Computing Complex Eigenvectors

Suppose that the components of x2, · · · , xn has been eliminated and we have

us = α1x1 + α1x1, vs+1 = Aus = α1λ1x1 + α1λ1x1. (A.1)

If we write

α1x1 = z1 + iw1, λ1 = ξ1 + iη1 (A.2)

then

us = 2z1, vs+1 = 2ξ1z1 − 2η1w1, (A.3)

z1 + iw1 =
1
2
[us + i(ξ1us − vs+1)/η1]. (A.4)

Apart from a normalizing factor we have therefore

x1 = η1us + i(ξ1us − vs+1). (A.5)
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A.1.2 The Re-orthogonalization

One of the main source of the computational error of the projection method is the orthogonalization

process. We consider the vector br+1 defined by

br+1 = Acr − h1rc1 − h2rc2 − · · · − hrrcr. (A.6)

When the components of br+1 is very small compared with ‖ Acr ‖2, br+1 will not be orthogonal

to the ci. We re-orthogonalize the computed vector br+1 with respect to c1, · · · , cr:

b′r+1 = br+1 − ε1rc1 − ε2rc2 − · · · − εrrcr, (A.7)

where

εir = cTi br+1/c
T
i ci = cTi br+1, (A.8)

for orthogonality. cr+1 is computed by

cr+1 = b′r+1/ ‖ b′r+1 ‖2 . (A.9)

Because br+1 has already been orthogonalized once with respect to ci, we can be sure that ε is of

the same order as in the normal cases.

A.1.3 The Multiplication

We can not always obtain the eigenvalue with the largest real part by the Arnoldi method, especially

when there are close eigenvalues. We propose an amplification process defined by

b̂r+1 = Ancr −
r∑

i=1

hirci, hir = (Ancr, ci), i = 1, ..., r, (A.10)

where

hr+1,r =‖ b̂r+1 ‖ . (A.11)

The eigenvalues of larger absolute values are made dominant by this method. Note that the convex

hull constructed by the nth power of the unwanted eigenvalues is different from the original one.

A.1.4 The Deformation of the Convex Hull

The complexity of the computation of the polynomial on the convex hull is proportional to the

number of the edges. We can consider the rectangular area which consists of the unwanted eigen-

values.
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Figure A.1. The concept of the rectangular hull

A.1.5 The Deflation

If the obtained eigenvalues are not the wanted one or if we want to compute another eigenvalue

with smaller absolute value, we can remove it by the orthogonalization.

We consider the case with complex eigenvalues. Suppose we have a complex pair of eigenvectors

x and x̄ which correspond to eigenvalues λ and λ̄. We remove the components of x and x̄ from the

approximate vector w obtained through the polynomial iteration. The new vector w′ is defined by

w′ = w − (w, x)x− (w, x̄)x̄ (A.12)

= w − 2(u, Rex)Rex− 2(u, i Imx)i Imx, (A.13)

which indicates that the vector (w, x)x+ (w, x̄)x̄ is complex in general.

A.2 Condition

We start from the decision of each element of the matrix given in the problem. In this section, the

scaled sequences of random numbers are assigned respectively to the real and the imaginary parts

of the eigenvalues except for those which are to be selected. The matrices are block diagonals with

2 × 2 or 1 × 1 diagonal blocks. Each block is of the form⎛
⎜⎝ a b/2

−2b a

⎞
⎟⎠ (A.14)

to prevent the matrix to be normal and has eigenvalues a± bi. It is transformed by an orthogonal

matrix generated from a matrix with random elements by the Schmidt’s orthogonalization method.
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Several values of not, the number of transformations, are tested in Table A.1 since they may

influence the condition of the transformed matrix. m and k denote the iteration number of the

Arnoldi method and the maximum degree of the Chebyshev polynomials respectively. We compare

this algorithm with the double-shifted QR algorithm and the power method. The number of the

iterations of the power method is expressed by np.

A.3 The Iterative Arnoldi Method

We examine two types of the Arnoldi algorithm, i.e., the ordinary one and the iterative one, in the

least squares Arnoldi method. The iterative version is proposed by Saad [53]. They are compared

with the other projection methods, such as the Arnoldi method, the power method, and the QR

algorithm. The re-orthogonalization technique is not used in this section.

A.3.1 The Ordinary Arnoldi Method

We test some values of the maximum eigenvalue λmax =2, 1.5, and 1.1 in order to evaluate the

effect of the close distribution of the wanted eigenvalues. The distribution of the other eigenvalues

is given by Reλ ∈ [0, 1] and Imλ ∈ [−1, 1].

In the least squares Arnoldi method, the λmax is computed by

λ̃ = ‖ x̃i+1 ‖2/‖ x̃i ‖2, (A.15)

where

x̃i+1 = Ax̃i, (A.16)

since we suppose that the maximum eigenvalue is a positive real number. Another way of computing

the approximate eigenvalue using the right-handed eigenvector is performed by

λ̃ =
(x̃i+1, x̃i)
(x̃i, x̃i)

(A.17)

using the normal equation. The precision of this technique is inferior to that of the former one,

though.

The error is computed by the L2 norm. The computation time is measured by HP9000/720,

where the unit is 1
60 second.
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A.3.1.1 Case 1

The maximum eigenvalue is 2. We test the influence of the number of the orthogonal transforma-

tions not here. There seems to be no effect on the error of each method. We use not = 3 in the

rest of the experiments.

As the degree of the matrix A increases, the least squares Arnoldi method gets a clear advantage

over the QR algorithm. The complexity of the least squares Arnoldi method can be seen to be

roughly O(n2) as our evaluation which we made in the previous chapter indicates, while that of

the QR algorithm O(n3).

The precision of the power method is far less than that of the least squares Arnoldi method.

We can show that it gets worse as the maximum eigenvalue approaches the second eigenvalue in

the following experiments.

matrix least squares Arnoldi Arnoldi power method QR

degree not m k error time m error time np error time error time

50 1 5 25 1.6E–10 18 15 2.2E–11 11 25 6.0E–12 11 1.7E–15 116

50 2 5 25 2.0E–13 17 15 4.8E–10 10 25 2.1E–10 10 8.8E–16 113

50 3 5 25 2.0E–13 18 15 2.2E–09 12 25 1.0E–10 11 5.1E–15 112

50 4 5 25 1.2E–12 18 15 2.6E–08 13 25 3.2E–10 11 5.3E–15 111

50 5 5 25 2.6E–12 17 15 1.7E–07 12 25 5.0E–09 11 2.2E–15 116

50 10 5 25 3.3E–11 19 15 4.8E–08 11 25 1.2E–08 11 8.8E–15 116

50 50 5 25 3.6E–13 18 15 2.7E–09 13 25 7.9E–10 10 7.7E–14 109

50 100 5 25 1.4E–13 21 15 1.9E–08 11 25 1.1E–09 12 7.0E–13 118

100 3 5 25 1.6E–12 57 15 7.2E–07 31 25 3.5E–08 44 3.1E–15 786

200 3 5 25 1.8E–11 224 15 2.6E–07 109 25 5.2E–09 186 1.1E–15 5745

Table A.1. λmax = 2, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].

A.3.1.2 Case 2

The maximum eigenvalue is 1.5. Since the condition of the Arnoldi method gets worse, the degree of

the Hessenberg matrix of the Arnoldi methodmmust be larger. Several patterns of the combination

of the parameters are tested. The least squares Arnoldi method gives the best results.

The relation between the error and the parameters of the least squares Arnoldi method is given

in Figure A.2. We denote the degree of the polynomial by n and the iteration number of the
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Arnoldi method by m. This graph shows that the iteration number of the Arnoldi method has

the closer correlation with the error than the degree of the least squares Arnoldi method. This is

caused by the fact that the Arnoldi method can not always obtain the eigenvalue of the largest

modulus. This problem is discussed subsequently.
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Figure A.2. The relation between the error and the parameters of the least squares Arnoldi method

matrix least squares Arnoldi Arnoldi power method QR

degree not m k error time m error time np error time error time

50 3 5 25 9.4E–06 18 15 1.2E–05 13 25 8.1E–05 12 3.6E–15 111

100 3 5 25 2.5E–04 59 15 2.3E–03 32 25 1.5E–02 43 9.5E–15 830

50 3 10 25 1.0E–07 21 20 8.9E–08 21 25 8.1E–05 11 3.6E–15 113

50 3 10 30 6.2E–10 24 25 1.7E–10 33 30 1.2E–05 13 3.6E–15 124

50 3 10 40 1.2E–11 31 25 1.7E–10 30 40 2.7E–07 17 3.6E–15 109

50 3 10 50 1.3E–14 39 30 3.4E–13 38 50 2.3E–08 22 3.6E–15 113

50 3 20 50 5.1E–11 71 30 3.4E–13 38 50 2.3E–08 21 3.6E–15 115

50 3 10 55 3.1E–15 41 30 3.4E–13 40 55 3.9E–09 23 3.6E–15 113

Table A.2. λmax = 1.5, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].

A.3.1.3 Case 3

The maximum eigenvalue is 1.1. The convergence of the projection methods is lost. The increase

of the degree of the polynomial has no effect.
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matrix least squares Arnoldi Arnoldi power method QR

degree not m k error time m error time np error time error time

50 3 10 100 1.0E–03 100 40 1.6E–07 82 100 3.9E–02 45 5.2E–15 117

50 3 15 100 2.6E–05 102 40 1.6E–07 82 100 3.9E–02 44 5.2E–15 115

50 3 20 100 1.6E–01 179 40 1.6E–07 84 100 3.9E–02 45 5.2E–15 118

50 3 30 100 1.4E–01 204 40 1.6E–07 82 100 3.9E–02 43 5.2E–15 112

50 3 15 100 2.6E–05 105 40 1.6E–07 82 200 1.3E–01 93 5.2E–15 118

50 3 15 50 2.3E–03 46 40 1.6E–07 82 50 1.1E–01 24 5.2E–15 114

Table A.3. λmax = 1.1, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].

A.3.2 The Iterative Arnoldi Method

The iterative Arnoldi method is examined by Saad [53] and it enables us to compute the eigenvalues

of a rather ill-conditioned matrix with limited memory space. We adopt this method instead of

the ordinary Arnoldi method in the least squares Arnoldi method. The Arnoldi method performed

for reference is also made iterative.

In this section we test the five variations of the distribution of the eigenvalues. The cases of

λmax = 2, 1.5, and 1.1 while the distribution of the other eigenvalues is Reλ ∈ [0, 1], and Imλ ∈

[−1, 1], and λmax = 3 and 2.5 while the distribution of the others is Reλ ∈ [0, 2], Imλ ∈ [−1, 1].

The power method is omitted since its inferiority is clear.

We denote the number of the iterations by niter.

A.3.2.1 Case 1

λmax is 2, while the distribution of the other eigenvalues is Reλ ∈ [0, 1], Imλ ∈ [−1, 1]. The

effect of the iteration is significant, especially for the least squares Arnoldi method. This tendency

becomes sharper as the maximum eigenvalue gets closer to the second eigenvalue.

matrix least squares Arnoldi Arnoldi QR

degree not niter m k error time niter m error time error time

50 3 1 5 15 1.1E–10 11 1 15 2.3E–09 18 5.1E–15 112

50 3 2 5 15 3.6E–15 23 2 15 8.9E–16 34 5.1E–15 112

Table A.4. λmax = 2, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].
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A.3.2.2 Case 2

The maximum eigenvalue is 1.5, while the distribution of the other eigenvalues is Reλ ∈

[0, 1], Imλ ∈ [−1, 1]. Some variations of the combination of the parameters niter and k are ex-

amined. The best combination of the parameters is not trivial and the consideration on this

problem is given in the last section.

matrix least squares Arnoldi Arnoldi QR

degree not niter m k error time niter m error time error time

50 3 1 5 15 5.0E–05 15 1 15 1.2E–05 17 3.6E–15 111

50 3 2 5 15 1.1E–08 25 2 15 5.3E–11 33 3.6E–15 111

50 3 3 5 15 1.9E–11 32 3 15 3.7E–15 49 3.6E–15 111

50 3 4 5 15 5.6E–14 42 4 15 3.3E–15 63 3.6E–15 112

50 3 5 5 15 3.4E–15 54 5 15 2.8E–15 79 3.6E–15 108

50 3 3 5 20 3.0E–15 42 3 15 3.7E–15 47 3.6E–15 110

50 3 3 5 19 8.9E–16 38 3 15 3.7E–15 49 3.6E–15 111

50 3 3 5 18 4.5E–13 38 3 15 3.7E–15 46 3.6E–15 111

50 3 1 5 60 1.3E–14 47 3 15 3.7E–15 47 3.6E–15 111

Table A.5. λmax = 1.5, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].

A.3.2.3 Case 3

The maximum eigenvalue is 1.1, while the distribution of the other eigenvalues is: Reλ ∈

[0, 1], Imλ ∈ [−1, 1]. In this test we examine the relation between the parameter niter and the

iteration number of the Arnoldi method m. The table shows that it is more effective to decrease

the iteration number of the Arnoldi method than to decrease the number of the Arnoldi iteration.

A.3.2.4 Case 4 and case 5

The maximum eigenvalues are 3 and 2.5, respectively, while the distribution of the other eigenvalues

is Reλ ∈ [0, 2], Imλ ∈ [−1, 1]. They are similar experiments as the former ones except for the

distribution of the smaller eigenvalues. It can be seen that it is not always effective to compute

the polynomial of a higher degree.
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matrix least squares Arnoldi Arnoldi QR

degree not niter m k error time niter m error time error time

50 3 1 50 10 3.2E–15 240 1 50 7.5E–13 235 5.2E–15 113

50 3 1 45 20 6.9E–15 206 1 45 4.1E–10 191 5.2E–15 115

50 3 2 30 20 3.2E–15 161 2 50 7.7E+00∗ 531 5.2E–15 113

50 3 3 20 15 6.3E–12 111 1 50 7.5E–13 234 5.2E–15 115

50 3 4 15 20 3.5E–13 112 1 50 7.5E–13 235 5.2E–15 114

50 3 5 10 20 2.9E–14 96 1 50 7.5E–13 236 5.2E–15 112

50 3 6 10 20 6.1E–13 116 1 50 7.5E–13 237 5.2E–15 113

50 3 6 10 25 3.2E–15 147 1 50 7.5E–13 235 5.2E–15 112

Table A.6. λmax = 1.1, while the distribution of the other eigenvalues is Re λ ∈ [0, 1], Im λ ∈ [−1, 1].

∗)The Arnoldi iteration fails to converge in some cases, where the wanted eigenvalues are not included in

the Ritz values.

matrix least squares Arnoldi Arnoldi QR

degree not niter m k error time niter m error time error time

50 3 1 5 10 3.9E–08 8 1 10 1.5E–05 7 2.7E–15 107

50 3 2 5 10 1.3E–11 15 2 10 6.9E–11 14 2.7E–15 110

50 3 3 5 10 3.4E–15 25 3 10 3.1E–15 22 2.7E–15 112

50 3 1 5 25 4.4E–14 20 3 10 3.1E–15 23 2.7E–15 109

Table A.7. λmax = 3, while the distribution of the other eigenvalues is Re λ ∈ [0, 2], Im λ ∈ [−1, 1].

matrix least squares Arnoldi Arnoldi QR

degree not niter m k error time niter m error time error time

50 3 1 5 10 2.2E–06 8 1 10 1.5E–03 8 6.6E–15 107

50 3 2 5 10 1.9E–06 16 2 10 1.2E–06 15 6.6E–15 113

50 3 2 10 10 1.0E–12 26 4 10 1.7E–12 29 6.6E–15 110

50 3 2 10 13 2.4E–14 29 4 10 1.7E–12 29 6.6E–15 107

50 3 2 10 15 6.9E–15 33 4 10 1.7E–12 30 6.6E–15 107

Table A.8. λmax = 2.5, while the distribution of the other eigenvalues is Re λ ∈ [0, 2], Im λ ∈ [−1, 1].
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A.4 The Computational Error of Close Eigenvalues

In this section we take up the problem of the close eigenvalues. As we have seen in the previous

experiments, the performance of the least squares Arnoldi method deteriorates when the maximum

eigenvalue is close to the second eigenvalue. We examine the techniques proposed in the previous

chapter by the following experiments.

A.4.1 The Re-orthogonalization

We begin with the results of the effect of the re-orthogonalization. The process can be written as

br+1 = Acr − h1rc1 − h2rc2 − · · · − hrrcr, (A.18)

b′r+1 = br+1 − ε1rc1 − ε2rc2 − · · · − εrrcr, (A.19)

cr+1 = b′r+1/ ‖ b′r+1 ‖2, εir = cTi br+1/c
T
i ci = cTi br+1. (A.20)

We examine the case where the maximum eigenvalue is 2.1, while the distribution of the other

eigenvalues is Reλ ∈ [0, 2], Imλ ∈ [−1, 1]. It can be seen that the effect of the re-orthogonalization

in the least squares Arnoldi method is more remarkable than that in the Arnoldi method. Note

that the iteration number of the Arnoldi method has a strong influence on the total complexity of

the least squares Arnoldi method. The re-orthogonalization is used in the subsequent experiments.

matrix least squares Arnoldi Arnoldi QR

degree niter m k error time niter m error time error time

50 1 10 15 5.4E–03 17 1 10 5.5E–02 11 7.4E–15 105

50 2 10 15 1.3E–03 36 2 10 1.1E+00 16 7.4E–15 107

50 1 20 15 2.7E–03 43 1 20 1.8E–03 33 7.4E–15 110

50 2 20 15 1.9E–08 83 2 20 3.4E–05 71 7.4E–15 110

50 3 20 15 2.2E–10 131 3 20 4.3E–05 98 7.4E–15 107

50 4 20 15 3.8E–15 168 4 20 4.3E–05 130 7.4E–15 105

Table A.9. λmax = 2.1, while the distribution of the other eigenvalues is Re λ ∈ [0, 2], Im λ ∈ [−1, 1].
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A.4.2 The Multiplication

The validity of the multiplication of the Arnoldi process is also tested. The algorithm is as follows:

br+1 = Ancr −
r∑

i=1

hirci, (A.21)

hir = (Ancr, ci), i = 1, ..., r, hr+1,r =‖ br+1 ‖, (A.22)

cr+1 = br+1/hr+1,r. (A.23)

The process of the multiplication of the matrix A can be considered as the rotation on the

origin in the complex plane as illustrated in Figure A.3. The separation of the second eigenvalue

is lost when the argument of the rotated eigenvalue is close to 2πn where n is an arbitrary integer,

considering the fact that the eigenvalue λ = aeiθ corresponds to the eigenvalue aneinθ of the matrix

An.

We denote the number of multiplications by nm.

O Re

Im

Figure A.3. The concept of the multiplication

The numerical results shown in Table A.10 support this consideration. The matrix solved in

this experiment is of degree 50 and has the following distribution of the eigenvalues:

1.

λmax = 2.01, λneighbor = 2.0 ± 2.0i. (A.24)
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As for the others,

Reλ ∈ [0, 2.0], Imλ ∈ [−1.0, 1.0]. (A.25)

2.

λmax = 2.01, λneighbor = 2.0 ± 0.2i, (A.26)

and as for the others,

Reλ ∈ [0, 2.0], Imλ ∈ [−1.0, 1.0]. (A.27)

The argument of the λneighbor is ±π
2 where λneighbor = 2.0 ± 2.0i. The precision of λmax deterio-

rates as the number of multiplications gets closer to 8. Although it is not realistic that we can

predicate the distribution of the eigenvalues, this technique is effective when the real parts of all

the eigenvalues are positive and the number of multiplications is less than three. The case where

λmax = 2+10−7 and λneighbor = 2.0±0.2i indicates that the multiplication technique can separate

the considerably close eigenvalues.

A.4.3 The Validity of Rectangular Hull in the Least Squares Arnoldi Method

This subsection discusses the validity of the rectangular hull as shown in Figure A.5. The algorithm

to compute the rectangular hull is described as follows:

Algorithm A.4. 1 (Least Squares Arnoldi with Rectangular Hull)

1. Find λl, λs and λi, i.e., the eigenvalues with the largest real part, the smallest real

part, and the largest imaginary part, respectively, in the eigenvalue estimates obtained

by the Arnoldi process

2. Define the vertices that construct the hull from ( Reλl, Imλi), ( Reλs, Imλi),

( Reλs,− Imλi), and ( Reλl,− Imλi)

The method has an advantage over the former one in that it enables us to deal with only

four edges which construct the hull to compute the polynomial. It is also important from the

viewpoint of the computational error. We examine this method using the matrix of degree 50. The

distribution of the eigenvalues is

λneighbor = 2.0 ± 1.0i (A.28)
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λmax λneighbor

conditions least squares Arnoldi

niter m k nm error time

2.01 2.0 ± 2.0i 3 15 30 1 8.5E–01 125

2.01 2.0 ± 2.0i 3 15 30 2 3.0E–04 140

2.01 2.0 ± 2.0i 3 15 30 3 2.6E–02 148

2.01 2.0 ± 2.0i 3 15 30 4 1.7E–08 182

2.01 2.0 ± 2.0i 3 15 30 5 1.0E–11 174

2.01 2.0 ± 2.0i 3 15 30 6 1.8E–14 194

2.01 2.0 ± 2.0i 3 15 30 7 1.3E+00 202

2.01 2.0 ± 2.0i 3 15 30 8 1.2E+00 224

2.01 2.0 ± 0.2i 3 15 30 1 1.3E–01 123

2.01 2.0 ± 0.2i 3 15 30 2 3.6E–01 142

2.01 2.0 ± 0.2i 3 15 30 3 4.6E–01 162

2.01 2.0 ± 0.2i 3 15 30 4 3.1E–05 170

2.01 2.0 ± 0.2i 3 15 30 5 4.0E–10 187

2.01 2.0 ± 0.2i 3 15 30 6 4.3E–14 197

2.01 2.0 ± 0.2i 3 15 30 7 2.0E–15 233

2.0000001 2.0 ± 0.2i 3 15 30 8 2.0E–15 213

Table A.10. The degree of matrix is 50, while the distribution of the other eigenvalues is Re λ ∈

[0, 2.0], Im λ ∈ [−1.0, 1.0].
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Figure A.4. The concept of the rectangular hull
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and as for the others,

Reλ ∈ [0, 2.0], Imλ ∈ [−1.0, 1.0]. (A.29)

The following table shows that the effect of this method on the total complexity is not so

remarkable, since the complexity of this process is not so large in comparison with that of the

Arnoldi method to compute the eigenvalue estimates.

λmax

conditions convex hull rectangular hull

niter m k error time error time

3.0 2 5 10 6.1E–13 19 2.5E–11 17

2.5 2 10 15 2.6E–11 34 2.8E–13 34

2.1 4 15 25 1.1E–10 141 1.5E–15 130

2.01 4 20 25 1.8E–01 197 4.8E–12 178

2.05 4 20 25 2.7E–09 198 1.5E–15 183

2.001 2 35 10 1.7E–13 230 2.0E–12 245

2.0001 2 40 5 3.3E–13 321 5.3E–13 318

Table A.11. The degree of matrix is 50, λneighbor is 2.0 ± 1.0i and the distribution of the others is Re λ ∈

[0, 2.0], Im λ ∈ [−1.0, 1.0].
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Figure A.5. The values of |pn(z)| on the complex plane where λmax = 2.01 and λmax = 2.001, using the

convex and the rectangular hull
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A.5 Consideration

A.5.1 Recapitulation

We tested the validity of the iterative least squares Arnoldi method with the various combinations

of the parameters, and several techniques to extract the wanted eigenvalues from the cluster of the

eigenvalues.

The re-orthogonalization is generally valid to keep the orthogonality of the eigenvectors. The

side effect of the rectangular hull is the enlargement of the enclosed area, which is not essential in

this method since the rightmost point of the hull is invariable.

k is the most effective parameter to improve the precision with small complexity. It requires

much memory storage for the coefficients of the Chebyshev polynomials, though. This problem is

solved by the iteration of the Arnoldi method.

The increase of m is not so effective compared with the other parameters, considering its

complexity of roughly O(m3). Hence the iteration number of the Arnoldi method should be as

small as possible, while the degree of the polynomial is to be made large. The extraction of the

wanted eigenvalues is not guaranteed, though, if the iteration number of the Arnoldi method is

too small. This difficulty may be surmounted by the deflation technique, which is not examined

in this paper yet.

A.5.2 The Close Eigenvalues

The Arnoldi method computes the eigenvalues with the largest moduli. If the superfluous eigenval-

ues have large imaginary parts, we will not be able to obtain the appropriate eigenvalue estimates.

We argue here the several measures proposed for the power method.

1. Suppose |λ1| .= |λ2| > |λ3|. After sufficient iterations, we have the approximation

xk ≈ λk
1(c1v1 + c2(λ2/λ1)kv2. (A.30)

It can be extended as

xk = d1v1 + d2v2 (A.31)

xk+1 = d1λ1v1 + d2λ2v2 (A.32)

xk+2 = d1λ
2
1v1 + d2λ

2
2v2, (A.33)
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and we have the following relation

xk+2 + βxk+1 + γxk = 0. (A.34)

The eigenvalues are computed from

λ2 + βλ+ γ = 0. (A.35)

The coefficients β and γ is the solutions of the normal equation⎛
⎜⎝ (xk+1, xk+1) (xk+1, xk)

(xk, xk+1) (xk, xk)

⎞
⎟⎠
⎛
⎜⎝ β

γ

⎞
⎟⎠ =

⎛
⎜⎝ (xk+1, xk+2)

(xk, xk+2)

⎞
⎟⎠ . (A.36)

2. When the other case where |λ1| > |λ2|, we finally have the relation

xk+1
.= αxk (A.37)

and α is computed similarly by

α =
(xk+1, xk)
(xk, xk)

. (A.38)

Although the case with the eigenvalues with larger moduli is not covered, these techniques are

also valid for the Arnoldi method, which is a variation of the power method.

A.6 Comparison with Other Methods

Some test problems from the Harwell-Boeing sparse matrix collection (see Duff, Grimes and Lewis

[14]), the computed spectra of which are shown in Figure A.6 and Figure A.7, are solved using the

block Arnoldi method. Ho’s algorithm is used for reference.

The stopping criterion is based on the maximum of all computed residuals max1≤i≤r ‖ Axi −

λixi ‖2 / ‖ xi ‖2≡ max1≤i≤r ‖ Hm+1,mYm,r,i ‖2 / ‖ Ym,i ‖2≤ ε. Ym,r,i and Ym,i stand for the i-th

column of the Ym,r and Ym, described in Chapter 4.

Table A.12 and Table A.13 indicate that Ho’s algorithm shows better performance than the

least squares Arnoldi method in most conditions except for the cases where the moduli of the

wanted eigenvalues are much larger than those of the unwanted eigenvalues. We may derive from

the result the poor optimality of the convex hull despite its low computation cost.

Lehoucq and Scott [35] presented a software survey of large-scale eigenvalue methods and

comparative results. The Arnoldi-based software included the following three packages ARNCHEB
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package by Braconnier [9], the ARPACK software package by Lehoucq and Sorensen [36], and the

Harwell Subroutine Library code EB13 by Scott [63] and Sadkane [60].

The ARNCHEB package provides the subroutine ARNOL, which implements an explicitly

restarted Arnoldi iteration. The code is based on the deflated polynomial accelerated Arnoldi it-

eration and uses Chebyshev polynomial acceleration. The Harwell Subroutine Library code EB13

implements the similar algorithm and also uses Ho’s Chebyshev polynomial acceleration. The

ARPACK provides subroutine DNAUPD that implements the implicitly restarted Arnoldi itera-

tion.

Some findings are reported on these methods:

1. ARNCHEB gives reasonable results for computing a single eigensolution but it can struggle

on problems for which several eigenvalues are requested.

2. ARPACK displays monotonic consistency and is generally the fastest and most dependable of

the codes studied, especially for small convergence tolerances and large departures from normality.

It uses dramatically fewer matrix-vector product than ARNCHEB. However, its restarting strategy

can be more expensive.

Moreover, from the results of Table A.14 and Table A.15, we can derive the strong dependency

of the polynomial acceleration on the distribution of spectrum. Figure A.6 and A.7 indicate that

the non-clustered distribution of spectra causes the slow convergence, since the approximate spectra

may completely differ from the accurate ones.
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problem WEST0497 WEST0655 WEST0989 WEST2021

degree of matrix 497 655 989 2021

number of entries 1727 2854 3537 7353

number of multiplications 924 440 275 120 13751 * 767 320

number of restarts 14 10 3 2 162 * 12 7

CPU time (sec.) 0.37 0.22 0.17 0.12 8.71 * 1.28 0.67

Table A.12. Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection,

which was extracted from modeling of chemical engineering plants. The results by Manteuffel’s algorithm

(right) versus those by the least squares Arnoldi method (left), with size of the basis 20, degree of the

polynomial 20, and block size 1, respectively, are listed. * denotes the algorithm fails to converge.

degree of matrix 2000 4000 6000 8000 10000

number of entries 5184 8784 12384 15984 19584

number of multiplications 589 240 393 180 236 140 393 380 236 80

number of restarts 7 4 5 3 3 2 5 7 3 1

CPU time (sec.) 0.83 0.43 1.24 0.70 1.23 0.85 2.57 2.81 2.14 0.97

Table A.13. Test problems from TOLOSA extracted from fluid-structure coupling (flutter problem). Size

of the basis, degree of the polynomial, and block size are 20, 20, 1, respectively.

Algorithm r = 1, m = 8 r = 5, m = 20

EB12 * 98/20930

ARNCHEB 8.6/3233 71/15921

EB13 17/4860 18/4149

ARPACK 3.7/401 2.1/167

Table A.14. Evaluation by Lehoucq and Scott. CPU times (in seconds) by IBM RS/6000 3BT and matrix-

vector products for computing the right-most eigenvalues of WEST2021 from CHEMWEST (* denotes

convergence not reached within 2000m matrix-vector products). We denote by r the block size and by m

the subspace dimension.
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Algorithm r = 1, m = 12 r = 4, m = 20

EB12 0.6/423 9.1/2890

ARNCHEB 3.4/1401 4.7/1712

EB13 0.4/119 1.3/305

ARPACK 0.5/90 1.3/151

Table A.15. CPU times (in seconds) and matrix-vector products for computing the right-most eigenvalues

of PORES2, matrix of degree 1224 with 9613 entries, which was extracted from reservoir simulation.
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Figure A.6. Computed spectra of WEST0655 and WEST0989 from CHEMWEST.
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Figure A.7. Computed spectra of WEST2021 and PORES2

83



Appendix B

Orthonormalization Techniques

This appendix introduces the algorithms for orthonormalizing a given subspace. A set of vectors

G = {x1, x2, ..., xn} is called orthogonal if

(xi, xj) = 0, if i �= j (B.1)

holds and orthonormal if every vector of G has a 2-norm equal to unity. A vector which is orthogonal

to all the vectors in a subspace S is said to be orthogonal to this subspace and the set of these

vectors, which is denoted by S⊥, is called the orthogonal complement of S. The projector which

maps a vector x into its component in the subspace S is called the orthogonal projector onto S.

The orthonormalization of any subspace can be achieved by the method known as the Gram-

Schmidt’s orthogonalization, which can be described as follows:

Algorithm B.0. 1 (Gram-Schmidt)

1. Compute r11 =‖ x1 ‖2. If r11 = 0 then stop

2. Compute q1 = x1/r11

3. For j = 2, ..., r, do

4. Compute rij = (xj , qi)

5. For i = 1, ..., j − 1, do

6. q̂ = xj −
∑j−1

i=1 rijqi

7. rjj =‖ q̂ ‖2

8. If rjj �= 0 then qj = q̂/rjj
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The relation

xj =
j∑

i=1

rijqi (B.2)

is called the QR decomposition of the n× r matrix X = [x1, x2, ..., xr].

The above method can be modified for better numerical properties,

Algorithm B.0. 2 (Modified Gram-Schmidt)

1. Compute r11 =‖ x1 ‖2. If r11 = 0 then stop

2. Compute q1 = x1/r11

3. For j = 2, ..., r, do

4. q̂ = xj

5. For i = 1, ..., j − 1, do

6. rij = (q̂, qi)

7. q̂ = q̂ − rijqi

8. rjj =‖ q̂ ‖2

9. If rjj �= 0 then qj = q̂/rjj

Another alternative is the Householder algorithm, which uses the Householder reflectors

P = I − 2wwT , (B.3)

where w is a vector of 2-norm unity and the vector Px represents a mirror image of x with respect

to the hyperplane span {w}⊥. For any vector x, the vector w for the Householder transformation

(B.3) is selected in such a way that

Px = αe1, (B.4)

where α is a scalar. This yields

2wTxw = x− αe1, (B.5)

which shows that w is a multiple of the vector x− αe1, i.e.,

w = ± x− αe1
‖ x− αe1 ‖2

. (B.6)
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Therefore, we have the condition

2(x− αe1)Tx =‖ x− αe1 ‖2, (B.7)

which gives α = ± ‖ x ‖2. Given a n × m matrix X, its first column can be transformed to a

multiple of the column e1 by premultiplying it by a Householder matrix P1, that is,

X1 = P1X, where X1e1 = αe1. (B.8)

Assume here that the matrix X has been transformed in k − 1 successive steps into

Xk ≡ Pk−1 · · ·P1X1, (B.9)

which is upper triangular up to column number k−1. To advance by one step, the next Householder

reflector matrix must be

Pk = I − 2wkw
T
k , wk =

z

‖ z ‖2
, (B.10)

where the components of the vector z are given by

zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for i < k

sign(xkk) ×
(∑n

i=k k
2
ik

)1/2 + xii for i = k

xik for i > k

. (B.11)

Algorithm B.0. 3 (Householder Orthogonalization)

1. Define X = [x1, ..., xm]

2. For k = 1, ...,m, do

3. If k > 1 then compute rk = Pk−1Pk−2 · · ·P1xk

4. Compute wk

5. Compute rk = Pkrk with Pk = I − 2wkw
T
k

6. Compute qk = P1P2 · · ·Pkek
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