
LAPACK in SILC: Use of a Flexible Application Framework for
Matrix Computation Libraries

Tamito KAJIYAMA
JST CREST and the University of Tokyo

kajiyama@is.s.u-tokyo.ac.jp

Akira NUKADA
JST CREST and the University of Tokyo

nukada@is.s.u-tokyo.ac.jp

Hidehiko HASEGAWA
University of Tsukuba and JST CREST

hasegawa@slis.tsukuba.ac.jp

Reiji SUDA
The University of Tokyo and JST CREST

reiji@is.s.u-tokyo.ac.jp

Akira NISHIDA
The University of Tokyo and JST CREST

nishida@is.s.u-tokyo.ac.jp

Abstract

This paper presents a novel application framework
named Simple Interface for Library Collections (SILC) that
allows users to make use of matrix computation libraries
in a flexible and language-independent manner. Using
SILC, various computing environments as well as alterna-
tive solvers and matrix storage formats from different li-
braries can be easily utilized. The present paper describes
the design and implementation of SILC for shared-memory
parallel computing environments, and discusses the use of
LAPACK in the framework of SILC together with some ex-
perimental results on the performance of the implemented
system.

1. Introduction

Driven by the vital needs for matrix computations in
many scientific and industrial applications, a large num-
ber of matrix computation libraries have been developed
[2, 6, 12]. User programs that make use of these matrix
computation libraries usually prepare data such as matrices
and vectors using library-specific data structures, and make
a function call by specifying the name of a library function
and its arguments in a prescribed order. Although function
calls are intuitive and useful in general, utilization of a li-
brary by means of function calls necessarily makes the user
programs dependent upon the library. This implies that con-
siderable modification in the user programs is necessary to
replace the library by another.

Replacement of matrix computation libraries is required
(1) when porting user programs to different computing en-
vironments, and (2) when using different solvers and ma-
trix storage formats. Large-scale scientific and industrial
applications are in need of high-performance computing
environments, each of which has its own matrix compu-
tation libraries in order to achieve near-peak performance
in the computing environment. These special libraries are
not available in other computing environments, so that the
users who port their user programs to different computing
environments are required to switch matrix computation li-
braries by modifying the source codes of the user programs.
Moreover, the most efficient solvers and matrix storage for-
mats vary according to the problems to be solved and the
computing environments in use [1]. Since a matrix compu-
tation library provides a limited number of solvers and ma-
trix storage formats, it is desirable (and even mandatory in
some cases) to try out various matrix computation libraries
to find the best solver and matrix storage format for a given
problem in a specific computing environment.

Use of matrix computation libraries by means of func-
tion calls is a good practice when using a small number
of libraries in a particular computing environment. How-
ever, when two or more computing environments are used
together with a number of alternative solvers and matrix
storage formats from different libraries, a source-level de-
pendency upon a specific library imposes heavy burdens on
users when they switch libraries.

To address this issue, we have been proposing a novel
application framework named Simple Interface for Library
Collections (SILC) [3]. Our framework enables user pro-
grams to be independent of matrix computation libraries

In Proceedings of the 8th International Conference on High-Performance Computing in Asia-Pacific Region
(HPC Asia 2005), pp. 205-212, Beijing, China, November 30-December 3, 2005. Copyright (c) 2005 IEEE.

through the following three design decisions: (1) to sepa-
rate data transfer and request for computation, (2) to request
the computation by means of mathematical expressions in
the form of text, and (3) to carry out the requested com-
putation in separate memory space independently of user
programs. The user programs in the framework of SILC
are free of library-specific function calls, so that users can
easily switch matrix computation libraries without making
a number of modifications to the user programs.

Among various approaches for higher usability of ma-
trix computations, our proposal is mainly related to prior
research based on Remote Procedure Call (RPC) and code
generation techniques. NetSolve [8] and Ninf–G [9] are
middleware that enables RPC to be carried out in Grid en-
vironments. User programs for these systems are written in
a manner similar to the traditional function calls, while user
programs in SILC make use of mathematical expressions
to request matrix computations. Telescoping Languages [5]
and CMC [4] are source-to-source code translation systems,
in which user programs are written in the MATLAB lan-
guage [11]. The focus of Telescoping Languages is on the
optimization of both user programs and matrix computation
libraries, whereas CMC focuses on the generation of opti-
mized Fortran subroutines from user programs as well as
on rich support for various sparse matrix storage formats.
In SILC, on the other hand, the focus is on the use of vari-
ous matrix computation libraries in a flexible and language-
independent manner.

In this paper, we describe the design and implementa-
tion of SILC for shared-memory parallel computing envi-
ronments. We also discuss the use of LAPACK [7] in the
framework of SILC as a practical example, with which we
clarify the benefits of using matrix computation libraries in
the proposed framework.

2. Overview of SILC

We have been developing a SILC system based on a
client-server architecture. Figure 1 shows an architectural
overview of the implemented system. Assumptions in the
current implementation are as follows: (1) a user program
(i.e. a client of a SILC server) is a sequential program;
(2) the SILC server runs in a shared-memory parallel com-
puting environment; and (3) the libraries to be installed into
the SILC server are parallel libraries based on OpenMP.

2.1. User Program (Client)

A user program is invoked together with a SILC server
that is started in advance in a local or remote computing
environment. The user program establishes a network con-
nection to the SILC server and utilizes the features of matrix

Main program

SILC client routines Interface thread

Execution thread

Request queue

User program (Client)

Communications

SILC server

Modules
Linear

equation
solvers

Eigenvalue
solvers

FFT

Network

Figure 1. Architectural overview of SILC.

computation libraries (installed into the server as modules)
by sending the following three types of requests.

1. At first, PUT requests are used to deposit data such as
matrices and vectors. The data is labeled by a user-
defined name for later reference and sent to the SILC
server through the network connection. The data is
kept undeleted in the server’s memory space unless
deletion is explicitly requested.

2. After the deposit of all relevant data, EXEC requests
are used to instruct computation by means of mathe-
matical expressions in the form of text. The names
defined by preceding PUT requests are used in the ex-
pressions to refer to the deposited data, and each op-
erator that appears in the expressions is translated into
a call of a library function, which is carried out in the
memory space of the SILC server. The data resulting
from the function call is retained in the server’s mem-
ory space. No memory space in the user program is
used for the execution of the library function.

3. Finally, when GET requests are issued, the data in the
server side is sent back to the memory space of the
user program. Names are used to specify the data to
be fetched. The data in the server’s memory space re-
mains unchanged even after the GET requests.

Traditional programming languages such as C and For-
tran, as well as scripting languages such as Python, can be
used for the development of user programs in SILC. In the
case of user programs written in C, the following three SILC
client routines are used to issue PUT, EXEC and GET re-
quests respectively:

• SILC_PUT(〈name〉, 〈data〉)
• SILC_EXEC(〈expr〉)
• SILC_GET(〈data〉, 〈name〉)

where 〈name〉 is a name of data and 〈expr〉 is a mathe-
matical expression (whose syntax is described in Section
2.3), both specified by string. 〈data〉 is a pointer to the
silc_envelope_t structure that is used for data commu-
nications between the user program and the SILC server.

SSI_MATRIX A;
SSI_SCALAR *b, *x, work[N*4], params[2];
int options[6], status;

/* Create a matrix A and a vector b */

status = ssi_cg(b, x, work,
params, options, &A, NULL);

(a)

silc_envelope_t A, b, x;

/* Create a matrix A and a vector b */

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A \\ b"); /* Solve Ax = b */
SILC_GET(&x, "x");

(b)

Figure 2. Comparison of two methods for utilizing matrix computation libraries. (a) is part of a user
program written in C that makes use of a library function based on a traditional function call. (b) is
another user program in C that carries out the same computation in the framework of SILC.

Figure 2 (a) shows part of a user program that makes
use of a matrix computation library based on a traditional
function call. Function ssi_cg [6] is a library function that
solves a system of linear equations Ax = b using the CG
method [1]. The input data of the library function are a
matrix A and vector b, and the output is a solution x. To
call the library function, the matrix A and vector b need to
be prepared in some data structures that are specific to the
library. In addition, the function call is made using a library-
specific function name together with a number of arguments
in a prescribed order.

On the other hand, Figure 2 (b) shows another user pro-
gram that carries out the same matrix computation in the
framework of SILC. In this framework, the matrix A and
vector b are deposited to a SILC server by two separate calls
of the client routine SILC_PUT, together with a user-defined
name for each data (i.e. “A” and “b” respectively). Then,
solution of the system of linear equations is requested by a
call of SILC_EXEC, whose argument is a mathematical ex-
pression in the form of text that instructs the computation.1

In the expression, the two user-defined names are used to
refer to the deposited data, and a new variable name “x” is
defined to store the solution. The SILC server translates the
mathematical expression into a call of an appropriate library
function (e.g., ssi_cg). Finally, the solution x is fetched
by SILC_GET with the user-defined name “x”. The primary
difference in contrast to the traditional programming style
with function calls is that the user program in SILC does
not contain any code that is specific to the actual library to
be used for the computation.

2.2. SILC Server

A SILC server is a multithreading program that consists
of two threads. One is the interface thread that handles PUT
and GET requests from a user program, dealing with all data

1The operator for solution of a system of linear equations is represented
by a backslash, which is the escape character in string literals in C. There-
fore, the operator is written as “\\” in Figure 2 (b).

communications between the user program and the SILC
server. The other is the execution thread that handles EXEC
requests. The EXEC requests are first received by the inter-
face thread and stored into a queue between the two threads.
Then the queued requests are processed one after another
by the execution thread. The user program and the interface
thread run synchronously, while the execution thread han-
dles the EXEC requests asynchronously. These threads are
implemented by the standard pthreads library.

With a SILC server running in a parallel computing en-
vironment, user programs can automatically gain benefits
of asynchronous parallel computation, even though they are
sequential programs. Support for parallel user programs is
in our future plans; we will discuss it in Section 5.

In addition, a SILC server can be a “hub” through which
separate user programs exchange data, because the data in
the server remains undeleted. Therefore, users can easily
integrate a series of cooperative user programs in such a
manner that PUT requests are issued by a mesh generation
program, EXEC requests by a computation program, and
GET requests by a visualization program.

2.3. Command Language

User programs in the framework of SILC make a request
of computation by means of mathematical expressions in a
simple command language. The language is designed with
the aim of making it possible to instruct matrix computa-
tions in a portable and language-independent manner.

The unit of computation to be carried out at once is a
statement, which is either an assignment or a procedure call.
The left-hand side of an assignment statement is a variable
name, which can be used without declaring a data type. The
right-hand side of the assignment is an expression that is
composed of variable names, operators and function calls.
The operators include binary arithmetic operators (+, -, *,
/, %), solution of a system of linear equations (for example,
A \ b obtains a solution x as in Ax = b), elementwise mul-
tiplication (*@) and division (/@) of matrices and vectors,
conjugate transposition (A’), complex conjugate (A˜) and

subscript (e.g., A[1:5,1:5] represents a 5×5 submatrix of
A). There is no language feature for execution flow control;
conditional branching and loops are supposed to be realized
by the programming languages in which user programs are
written.

The command language makes a distinction between
procedures and functions in order to exclude ambiguities
from mathematical expressions. Procedures can change
the values of arguments, while functions cannot; in other
words, the arguments of functions are read-only, whereas
the arguments of procedures are considered to be read-write
variables. Suppose that in the following statement, X is a
matrix, and function f changes some elements of X:

A = f(X) + g(X)

Then, semantic ambiguity arises with regard to X to be
passed as the argument of function g; the matrix may be
passed to g before it is modified in f, as well as passed af-
ter modified in f. Therefore, functions are not allowed to
change the values of arguments.

Also in order to avoid multiple interpretations of a com-
putation request, an assignment in the command language
is a statement instead of an expression, which implies that
the following example yields a syntax error:

A = f(X) + (X = Y)

If this were a valid example, two interpretations would be
possible on the value of variable X to be passed as the ar-
gument of function f; namely, X may be of the old value
before the assignment X = Y is carried out, as well as the
new value that equals to Y. To exclude this kind of ambi-
guity, an assignment is considered to be a statement in the
command language.

As a means of requesting matrix computations, use of
mathematical expressions in the form of text has the fol-
lowing advantages.

• Mathematical expressions are simple. They are often
easier to read and more intuitive than the traditional
function calls in C and Fortran.

• Mathematical expressions are well-defined and very
portable. They are uniformly interpreted regardless of
matrix storage formats, precisions and computing en-
vironments.

• Mathematical expressions can be considered a sort of
application programming interface (API) that is in-
dependent of programming languages. Some matrix
computation libraries provide multiple APIs for sev-
eral programming languages, but the details of the
APIs may vary according to the programming lan-
guages. Using mathematical expressions for request-
ing matrix computations, on the other hand, users do
not have to care about the differences of APIs among
programming languages.

• Text is a simple form of data, so that mathematical ex-
pressions in the form of text can be supplied in many
ways: as string literals in program codes, by data files,
as command-line arguments of user programs, through
interactive sessions with users, and so on.

3. Use of LAPACK in SILC

In this section, we take LAPACK [7] as an example of a
matrix computation library and discuss the way of using the
library in the framework of SILC.

LAPACK (an acronym for Linear Algebra Package) is a
Fortran library including a number of solvers for systems
of linear equations, linear least square problems, and eigen-
value problems. LAPACK provides support for three ma-
trix storage formats: full, packed and banded. Full storage
format is a two-dimensional array that stores all elements
of a matrix column by column. Packed storage format is
used to store symmetric, Hermitian or triangular matrices
compactly, in which only the elements of either upper or
lower triangle are stored, being packed by columns. Finally,
banded storage format is used for band matrices. A m × n
band matrix with kl non-zero sub-diagonals and ku non-zero
super-diagonals are stored in a two-dimensional array with
(kl+ku+1) rows and n columns; each row of the array stores
a non-zero diagonal, and elements in a column of the matrix
are stored in the corresponding column of the array.

There are three modes in which LAPACK is utilized in
the framework of SILC as described below.

(A) Both a user program and a SILC server use the ma-
trix storage formats and solvers provided by LAPACK.
For example, the user program deposits matrices in the
banded storage format, and the SILC server solves sys-
tems of linear equations using a pair of LAPACK rou-
tines dgbtrf (for forming a triangular factorization of
a band matrix in double precision) and dgbtrs (for
solving systems of linear equations with the factored
matrix and multiple right-hand sides).

(B) A user program deposits matrices using a storage for-
mat of LAPACK, while a SILC server uses solvers pro-
vided by other matrix computation libraries. For ex-
ample, the SILC server can convert matrices from the
banded storage format into Compressed Row Storage
(CRS) format [1] and use ssi_cg (from a library of it-
erative solvers [6]) to solve systems of linear equations
with the CG method.

(C) A user program deposits matrices using a storage for-
mat other than the three storage formats of LAPACK,
while a SILC server use solvers of LAPACK after con-
verting deposited matrices into one of the three stor-
age formats. For example, the user program prepares
a matrix in the CRS format and deposits it to the SILC

double *A, *b;
int N, kl, ku, lda, ldb, nrhs, info, *ipiv;

/* Create band matrix A (with kl sub-diagonals and ku super-
diagonals) and nrhs right-hand sides b */

/* Form a triangular factorization of matrix A */
dgbtrf(N, N, kl, ku, A, lda, ipiv, &info);
if (info == 0) {
/* Solve systems of linear equations Ax = b with the

factored matrix, replacing b with solutions */
dgbtrs(’N’, N, kl, ku, nrhs, A, lda, ipiv, b,

ldb, &info);
}

Figure 3. A user program written in C with
direct calls of LAPACK routines.

server, which converts the matrix into the banded stor-
age format and solves systems of linear equations by
dgbtrf and dgbtrs.

Figure 3 illustrates part of a user program written in
C that directly calls two LAPACK routines dgbtrf and
dgbtrs to solve systems of linear equations Ax = b, where
A is an N × N band matrix with kl sub-diagonals and ku
super-diagonals in the banded storage format, and b is an
N × nrhs full matrix that represents multiple right-hand
sides (nrhs stands for the number of right-hand sides). Af-
ter the call of dgbtrf, the band matrix in A is replaced with
a triangular factorization of the matrix. Similarly, dgbtrs
replaces the right-hand sides in b with solutions. There-
fore, the copies of the matrix and right-hand sides have to
be made if they are used after the calls of the LAPACK rou-
tines (for example, in order to check the solutions using the
input data).

Figure 4 shows a user program in C that makes use of
LAPACK in SILC in the mode (A) above (this example also
illustrates the usage of the silc_envelope_t structure in
more detail than Figure 2 (b)). The band matrix A and right-
hand sides b are created in the same way as in the user pro-
gram of LAPACK. After the matrix and right-hand sides
are deposited to a SILC server by SILC_PUT, the solution
of systems of linear equations is requested by SILC_EXEC.
The same LAPACK routines dgbtrf and dgbtrs are used
for the solution, since the two operands of the \ operator
are band and full matrices of double precision. Copies of A
and b are automatically made in the SILC server; the user
program does not have to care about memory management
during the computation.

The following is a summary of major benefits of using
LAPACK in the framework of SILC.

• Various solvers and matrix storage formats (possibly of
other libraries) can be used without any modification to
user programs. Since matrices are sent to the memory

silc_envelope_t object;
double *A, *b, *x;
int N, kl, ku, nrhs;

/* Create band matrix A (with kl sub-diagonals and ku super-
diagonals) and nrhs right-hand sides b */

/* Deposit band matrix A */
object.v = A;
object.type = SILC_MATRIX_TYPE;
object.format = SILC_FORMAT_BAND;
object.precision = SILC_DOUBLE;
object.m = object.n = N;
object.l = kl;
object.u = ku;
SILC_PUT("A", &object);

/* Deposit right-hand sides b */
object.v = b;
object.type = SILC_MATRIX_TYPE;
object.format = SILC_FORMAT_DENSE;
object.precision = SILC_DOUBLE;
object.m = N;
object.n = nrhs;
SILC_PUT("b", &object);

/* Solve systems of linear equations Ax = b */
SILC_EXEC("x = A \\ b");

/* Fetch solutions x */
object.v = x;
SILC_GET(&object, "x");

Figure 4. A user program in C that makes use
of LAPACK in the framework of SILC.

space of a SILC server, the server has a free choice
of matrix storage formats and solvers to be used for
computation. The use of different storage formats and
solvers in the server does not affect the user programs
except for an increase in execution times.

• The same computation request “x = A \ b” can be
used for all the three storage formats as well as for all
precisions. LAPACK supports single and double preci-
sions of both real and complex numbers, and the names
of LAPACK routines vary according to the storage for-
mats and precisions the routines accept. For example,
dgbtrf and dgbtrs accept real band matrices of dou-
ble precision as the prefix dgb indicates (it stands for
“double general band”). In SILC, on the other hand,
appropriate solvers are selected according to the stor-
age formats and precisions.

• User programs will be independent of vender-specific
C interfaces. Since LAPACK is a Fortran library that
is not compatible with the “passing by value” fashion
of function calls in C, most vendors of optimized LA-
PACK libraries (including Intel Math Kernel Library
and Sun Performance Library) provide convenient C

Table 1. Computing environments used for
experiments.

Environment Specifications OpenMP
1. A notebook PC Intel Pentium M 733 1.1GHz, N/A

768MB memory, Fedora Core 3
2. IBM eServer Dual Intel Xeon 2.8GHz, 2 threads

xSeries 335 1GB memory, Red Hat Linux 8.0
3. IBM eServer IBM Power5 1.65GHz × 2 4 threads

OpenPower 710 (4 logical CPUs), 1GB memory,
SuSE Linux Enterprise Server 9

4. SGI Altix3700 Intel Itanium2 1.3GHz × 32, 16 threads
32GB memory, Red Hat Linux
Advanced Server 2.1

interfaces to the libraries for the sake of user programs
written in C. However, there is no de facto standard
among the C interfaces, so that the user programs in C
will depend on a certain vendor-specific C interface; it
is not the case in SILC.

4. Experiments

This section shows the results of two experiments on
(1) the performance of SILC systems in different comput-
ing environments and (2) the performance of a user program
that utilizes LAPACK in the framework of SILC. Table 1
is a summary of four computing environments used in the
experiments. The notebook PC of Environment 1 and the
other three of Environments 2 through 4 are interconnected
via a 100 Base–TX local-area network.

4.1. Performance of SILC in different computing
environments

We examined the performance of SILC’s client-server
architecture by using the two user programs shown in Fig-
ure 2 (a) and (b). We call them Programs (a) and (b) for
short. In this experiment, these user programs are used to
solve a five-point discrete Laplacian on n × n uniform or-
thogonal grid with zero Dirichlet boundary conditions. The
matrix A of the corresponding system of linear equations
Ax = b to be solved is as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T −I

−I T
. . .

. . .
. . . −I
−I T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1

−1 4
. . .

. . .
. . . −1
−1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

where N = n2 and I is the n × n identity matrix. The CRS
format is used as the storage format of A, whose number of
non-zero elements is 5N − 4n.

Figure 5 shows the experimental results, with the dimen-
sion N of the matrix A on the horizontal axis and the total

0.1

1.0

10.0

100.0

10,000 40,000 160,000

Dimension N

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d
s
)

 E1. Program (a) in Environment 1

 E2. SILC server in Environment 2

 E3. SILC server in Environment 3

 E4. SILC server in Environment 4

E2 thru E4: Program (b) in Environment 1

Figure 5. Performance of Programs (a) and
(b). E1 is of Program (a) in Environment 1,
while E2 through E4 are of Program (b) in
Environment 1 together with different SILC
servers in Environments 2 through 4, respec-
tively.

execution time in seconds on the vertical axis. Both Pro-
grams (a) and (b) are executed in Environment 1 shown
in Table 1. Results with the label E1 are of Program (a),
which directly calls a sequential version of the library func-
tion ssi_cg. Results with the labels E2 through E4 are
of Program (b) together with different SILC servers in En-
vironments 2 through 4, respectively. A parallel version of
ssi_cg is used in the SILC servers; the number of OpenMP
threads in each environment is also shown in Table 1.

In the case of N = 10000, the execution time of E2
is slightly longer than that of E1, because two calls of
SILC_PUT for depositing A and b and a call of SILC_GET
for fetching x impose some overhead (about 0.1 second) due
to data communications, which happened to be greater than
the performance gain resulting from parallel computation
with 2 threads in the SILC server in Environment 2. In all
of the other cases, Program (b) achieved better performance
than Program (a), because the communication overhead in
SILC is fully canceled by the speed-ups through parallel
computation with multiple OpenMP threads.

4.2. Performance of LAPACK in SILC

We also examined the performance of user programs that
make use of LAPACK in the framework of SILC based on
the three modes (A) through (C) described in Section 3.
Since LAPACK is a sequential matrix computation library
for dense matrices, use of LAPACK in the modes (A) and
(B) is unfavorable to SILC because of relatively large over-
head resulting from data communications. As an example,
suppose that a user program deposits the matrix A in the pre-
vious example in the banded storage format and requests a
SILC server to solve Ax = b using two LAPACK routines
dgbtrf and dgbtrs. The matrix A in question consists of

five non-zero diagonals, having a lot of zero elements be-
tween outer non-zero diagonals, so that depositing the ma-
trix in the banded storage format will impose heavy com-
munication overhead when the dimension N is large. For
instance, in the case of N = 10000, the matrix A of double
precision in the banded storage format takes 23MB, while
the data size of the same matrix in the CRS format is only
620KB. Moreover, LAPACK is a sequential library, so that
the overhead of data communications cannot be canceled
with parallel computation in the SILC server. Therefore, it
is not a good idea in general to use LAPACK in the frame-
work of SILC in the modes (A) and (B).2

On the other hand, use of LAPACK in the mode (C) has
a potential for good performance. To substantiate it, we
conducted another experiment using the following two user
programs, together with the same matrix A used in the ex-
periment in Section 4.1:

Program #1 is a user program in the framework of SILC
that deposits the matrix A of dimension 40,000 in the
CRS format and issues the following computation re-
quest:

X = band(A) \ B

where band is a function that converts the matrix
passed as the argument into LAPACK’s banded storage
format, and B is a full matrix that stores multiple right-
hand sides b1, b1, . . . bnrhs. In the corresponding SILC
server, the two LAPACK routines dgbtrf and dgbtrs
are used to solve Ax = b1, Ax = b2, . . . , Ax = bnrhs.

Program #2 is a user program that makes multiple calls of
the library function ssi_cg to solve the same systems
of linear equations with the CG method. The matrix A
is prepared in the CRS format.

Figure 6 shows the experimental results, with the num-
ber of right-hand sides (nrhs) on the horizontal axis and the
total execution time in seconds on the vertical axis. Both
Programs #1 and #2 are executed in Environment 1 shown
in Table 1, while the SILC server used by Program #1 is
in Environment 2. The execution time of Program #2 is
proportional to the number of right-hand sides, since each
system of linear equations is independently solved. With
the two LAPACK routines, on the other hand, solution of
nrhs systems of linear equations is performed by one call
of dgbtrf for forming a triangular factorization of the ma-
trix A and one call of dgbtrs for solving the systems of
linear equations with the factored matrix. Therefore, the
performance gain of Program #1 is significant in the cases
of nrhs ≥ 4.

2This discussion does not imply that the modes (A) and (B) are useless;
LAPACK is merely one of matrix computation libraries that would be used
in the framework of SILC, and there are the cases in which use of a library
in the modes (A) and (B) achieves good performance.

1.0

10.0

100.0

1000.0

1 2 4 8 16 32 64 128

Number of right-hand sides

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d
s
)

Program #1 (CRS to banded, dgbtrf/dgbtrs)

Program #2 (CRS, ssi_cg)

Figure 6. Performance of a user program that
utilizes LAPACK in the framework of SILC in
the mode (C), compared with a user program
that directly makes multiple calls of an itera-
tive solver.

The main benefit proved in this experiment is that in the
framework of SILC, it is relatively easy to switch matrix
storage formats and solvers to be involved in the solution of
linear systems. Users only needs to change mathematical
expressions issued by SILC_EXEC. In contrast, in the tradi-
tional programming style based on direct function calls, the
switch of matrix storage formats often requires considerable
modification of user programs, which makes it impractical,
for example, to find the most efficient matrix storage format
from a number of alternatives, possibly provided by differ-
ent matrix computation libraries.

5. MPI-based SILC for distributed-memory
parallel computing environments

We have plans for a SILC system for distributed-memory
parallel computing environments based on Message Passing
Interface (MPI). Figure 7 shows two configurations of MPI-
based SILC systems. In the configuration (a), a SILC server
is an MPI-based program, while a user program (client) is a
sequential program, which would be identical with the user
programs in SILC for shared-memory parallel computing
environments discussed in the preceding sections. In the
configuration (b), on the other hand, both a SILC server and
a client are MPI-based programs.

Each of the two configurations needs a mechanism of
data redistribution that rearranges data before transferring
it between the SILC server and the user program. In the
configuration (a), the user program communicates data with
one of the server processes. The data to be transferred
between the user program and the server process needs to
be redistributed among all the server processes so that the
server can perform matrix computations on the data in par-
allel. Similarly in the configuration (b), each of the client

User program
(Client) SILC server

Connection for request
and data transfer

Data redistribution layer

(a) The SILC server is an MPI program, while the user
program (client) is sequential.

Secondary connections
for data transfer Data redistribution layer

User program
(Client) SILC server

Primary connection for request and data transfer

Master

Worker #1

Worker #2

(b) Both the SILC server and client are MPI programs.

Figure 7. Two client-server configurations of
MPI-based SILC systems.

processes sends part of data to one of the server processes.
The user program and the SILC server may employ different
data distributions, so that if it is the case, the redistribution
mechanism is exploited to rearrange the data from one data
distribution to the other.

The design and implementation of MPI-based SILC sys-
tems together with the data redistribution mechanisms are
in our future work.

6. Concluding Remarks

Use of matrix computation libraries in the traditional
programming style based on direct function calls usually
results in a source-level dependency upon the libraries,
making it difficult to switch libraries without modifying
user programs. To address this issue, we have proposed
a new application framework for using matrix computa-
tion libraries in a flexible and language-independent man-
ner. In this paper, we described the design and implemen-
tation of the proposed framework for shared-memory par-
allel computing environments. We also discussed the use

of LAPACK in the framework of SILC. Although the dis-
cussion in Section 3 was specific to LAPACK, similar dis-
cussions apply to most matrix computation libraries other
than LAPACK. In brief, SILC makes user programs inde-
pendent of matrix computation libraries to be used, allowing
users to easily switch libraries without making a consider-
able amount of modification to the user programs.

As discussed in the previous section, our next step is to
develop an MPI-based SILC system for distributed-memory
parallel computing environments. We also plan to provide
modules for major matrix computation libraries, allowing
users to easily switch libraries and compare the perfor-
mances of user programs with respect to different solvers
and matrix storage formats. Implementation of a scripting
language for SILC and run-time optimization of mathemat-
ical expressions are also in our future plans.

Acknowledgments

This research [10] was supported by a grant from the
Core Research for Evolutional Science and Technology
(CREST) of Japan Science and Technology Agency (JST).

References

[1] R. Barrett et al. Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods. SIAM, 1994.

[2] J. Dongarra. Freely available software for linear algebra
on the Web, May 2004. http://www.netlib.org/utk/people/
JackDongarra/la-sw.html.

[3] T. Kajiyama, A. Nukada, H. Hasegawa, R. Suda, and
A. Nishida. SILC: a flexible and environment independent
interface to matrix computation libraries. In Proc. 6th In-
ternational Conference on Parallel Processing and Applied
Mathematics (PPAM 2005), Sept. 2005. To appear.

[4] H. Kawabata, M. Suzuki, and T. Kitamura. A MATLAB-
based code generator for sparse matrix computations. In
APLAS 2004, LNCS 3302, pages 280–295, Nov. 2004.

[5] K. Kennedy et al. Telescoping languages: A system for au-
tomatic generation of domain languages. Proceedings of the
IEEE, 93(2):387–408, Feb. 2005.

[6] H. Kotakemori, H. Hasegawa, T. Kajiyama, A. Nukada,
R. Suda, and A. Nishida. Performance evaluation of parallel
sparse matrix–vector products on SGI Altix3700. In Proc.
First International Workshop on OpenMP (IWOMP 2005),
June 2005. To appear.

[7] LAPACK. http://www.netlib.org/lapack/.
[8] NetSolve. http://icl.cs.utk.edu/netsolve/.
[9] Ninf Project. http://ninf.apgrid.org/.

[10] A. Nishida. SSI: Overview of simulation software infras-
tructure for large scale scientific applications. In IPSJ SIG
Notes, 2004–HPC–098, pages 25–30, 2004. In Japanese.

[11] The MathWorks, Inc. http://www.mathworks.com/.
[12] K. Wu and B. Milne. A survey of packages for large linear

systems. Technical Report LBNL–45446, Lawrence Berke-
ley National Laboratory, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 790.866]
>> setpagedevice

