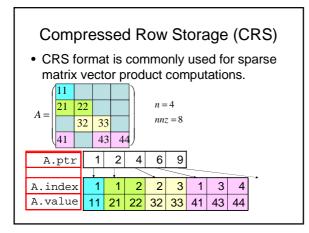
Performance Evaluation of a Parallel Iterative Method Library using OpenMP

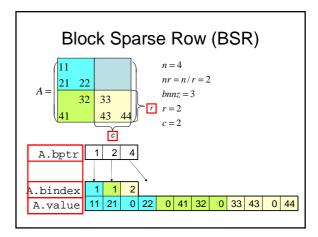
H. Kotakemori [1], H. Hasegawa [2], A. Nishida [1]

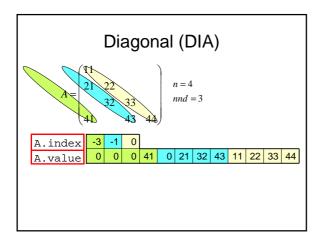
[1] University of Tokyo / CREST, JST [2] University of Tsukuba / CREST, JST

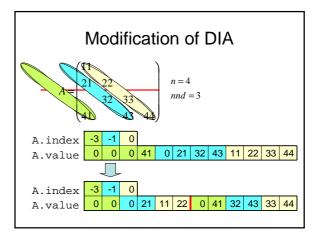
Outline

- Introduction
- Sparse Matrix-Vector Product
- Experiments
 - Sparse matrix-vector product
- Conversion costsConclusions


Introduction

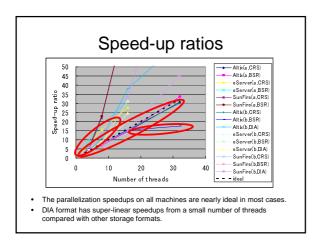

- We are developing Lis (a Library of Iterative Solvers for linear systems), which includes a wide range of iterative solvers, preconditioners, and storage formats.
 http://ssi.is.s.u-tokyo.ac.jp/lis/
- Performance of Iterative solvers depends on metric used to product
- matrix-vector product.
 Number of Iteration does not depend on storage format.
- Fast storage format is essential for iterative method.
- We discuss the performance of sparse matrixvector products on several shared memory parallel machines.

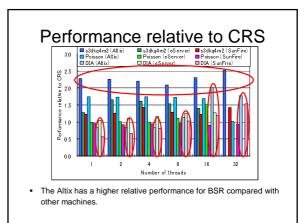

Sparse Matrix-Vector Product with OpenMP

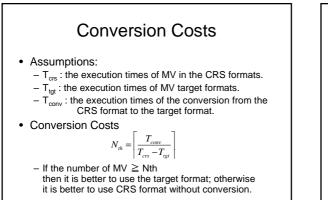

- Sparse Matrix-Vector Product y=Ax
 The storage formats affect the performance
 We see the storage formation (ODE DED DI
 - We consider three storage formats (CRS,BSR,DIA)
- Parallelize using OpenMP.
 - OpenMP is designed for shared memory machines.
- Advantages for OpenMP

 a serial program can be parallelized one loop at a time.
 - Compiler directives are used, so that the same code can be compiled for serial or parallel execution.

Experiments


- · Goals
 - Scalability of matrix-vector product
 - Performance of each storage format in each platform
- We examined
 - times of parallel matrix-vector products
 - speed-ups of parallel matrix-vector products
 - storage format conversion costs
- BSR and DIA format is converted from based format CRS


Evaluation platforms


Machine	SGI Altix3700	IBM eServer p5 595	Sun SunFire15K	
CPU	Itanium2 1.3GHz	Power5 1.9GHz	USPARCIII+ 900MHz	
L1 Cache	16KB	32KB	64KB	
L2 Cache	256KB	1.92MB	8MB	
L3 Cache	3MB	36MB		
# of PE	32	64(used 16)	72(used 32)	
Memory	32GB	256GB	288GB	
OS	Linux	AIX 5L	Solaris 9	
Compiler	Intel C/C++8.1	IBM XL C/C++7.0	Sun WorkShop6	
Options	-03	-03	-05	

Test Matrices					
	(a) Matrix Market	(b) FEM of the three- dimensional Poisson equation on a cube			
Name	s3dkq4m2	Poisson			
Dimension	90,449	1,000,000			
# of nonzeros	4,820,891	26,463,592			
# of nonzeros per row	53.30	26.46			
Memory for CRS	55.5MB	306.7MB			
Memory for BSR_21	48.7MB	337.3MB			
Memory for BSR_22	46.2MB	453.1MB			
Memory for BSR_31	50.2MB	394.9MB			
Memory for BSR_41	48.4MB	452.2MB			
Memory for DIA	456.1MB	206.0MB			

	LXC	cutio		terati		nus)	of 10	00
Nu	mber of th	reads Format	1	2	4	8	16	32
	Altix	CRS	20.8	10.47	5.26	2.71	1.43	0.6
		BSR_41	9.17	4.65	2.39	1.30	0.62	0.2
а	eServer	CRS	24.11	7.32	3.16	1.56	0.87	
а	eServer	BSR_41	18.89	4.42	1.97	1.02	0.62	
	SunFire	CRS	428.13	212.39	87.16	19.46	5.32	2.5
		BSR_22	348.54	168.63	60.67	15.13	4.34	1.7
	Altix	CRS	149.50	74.96	37.43	18.76	9.51	4.9
		BSR_31	85.60	43.25	21.53	10.92	5.63	4.8
		DIA	178.50	89.19	44.34	16.40	4.72	2.8
	eServer	CRS	154.50	79.63	40.61	20.72	7.62	
b		BSR_21	156.27	78.83	40.78	18.57	5.06	
		DIA	147.04	71.85	34.92	16.51	6.02	
	SunFire	CRS	2542.74	1263.50	650.93	337.33	159.38	55.0
		BSR_21	2666.34	1363.94	692.93	353.03	176.88	58.8
		DIA	4523.94	1905.25	791.90	329.20	134.96	35.8
•			ormat, tl ices and			ize diffe	rs for	

Nι	umber of th	mber of threads		2	4	8	16	32
_		Format		-		0	10	02
	Altix	BSR_41	50	51	52	56	60	132
a	eServer	BSR_41	56	51	60	67	75	
	SunFire	BSR_22	20	18	15	46	112	110
	Altix	BSR_31	53	55	68	61	79	4306
		DIA				76	35	83
	eServer	BSR_21		1082		104	45	
b		DIA	93	46	33	24	34	
	SunFire	BSR_21						
		DIA				87	17	13
•			ue of Nth in it and the		slightly and	l is approx	imately 60	times

Conclusions

- Our Implementations have attained satisfactory scalability.
- The storage format has been observed to greatly affect the performance of matrix-vector products.
 - Altix has a higher performance for BSR in this experiments.
 - DIA format has a higher performance, if data is installed on the cache.
- The conversion of the storage format provides faster computation of the matrix-vector product.

Future Works

- Our next goal is parallelization for distributed memory parallel machines through MPI and MPI-OpenMP hybrid parallelization.
- We will also work toward highperformance iterative linear solvers using these kernel routines and effective preconditioners for the solvers.

Acknowledgements

• This research was supported in part by CREST "Development of Software Infrastructure for Large Scale Scientific Simulation", Japan Science and Technology Agency.