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Introduction
• We are developing Lis (a Library of Iterative 

Solvers for linear systems), which includes a 
wide range of iterative solvers, preconditioners, 
and storage formats.
– http://ssi.is.s.u-tokyo.ac.jp/lis/

• Performance of Iterative solvers depends on 
matrix-vector product.

• Number of Iteration does not depend on storage 
format.

• Fast storage format is essential for iterative 
method.

• We discuss the performance of sparse matrix-
vector products on several shared memory 
parallel machines.

Sparse Matrix-Vector Product with OpenMP

• Sparse Matrix-Vector Product y=Ax
– The storage formats affect the performance

– We consider three storage formats (CRS,BSR,DIA)

• Parallelize using OpenMP.
– OpenMP is designed for shared memory machines.

• Advantages for OpenMP
– a serial program can be parallelized one loop at a 

time. 

– Compiler directives are used, so that the same code 
can be compiled for serial or parallel execution. 

Compressed Row Storage (CRS)

• CRS format is commonly used for sparse
matrix vector product computations.
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Block Sparse Row (BSR)
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Diagonal (DIA)
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Modification of DIA
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Experiments

• Goals
– Scalability of matrix-vector product

– Performance of each storage format in each platform

• We examined
– times of parallel matrix-vector products 

– speed-ups of parallel matrix-vector products 

– storage format conversion costs

• BSR and DIA format is converted from based 
format CRS

Evaluation platforms

-O5-O3-O3Options

Sun WorkShop6IBM XL C/C++7.0Intel C/C++8.1Compiler

Solaris 9AIX 5LLinuxOS

288GB256GB32GBMemory

72(used 32)64(used 16)32# of PE

---36MB3MBL3 Cache

8MB1.92MB256KBL2 Cache

64KB32KB16KBL1 Cache

USPARCIII+ 
900MHz

Power5 1.9GHzItanium2 1.3GHzCPU

Sun SunFire15KIBM eServer p5 
595

SGI Altix3700Machine

Test Matrices

206.0MB456.1MBMemory for DIA

452.2MB48.4MBMemory for BSR_41

394.9MB50.2MBMemory for BSR_31

453.1MB46.2MBMemory for BSR_22

337.3MB48.7MBMemory for BSR_21

306.7MB55.5MBMemory for CRS

26.4653.30# of nonzeros per row

26,463,5924,820,891# of nonzeros

1,000,00090,449Dimension

Poissons3dkq4m2Name

(b) FEM of the three-
dimensional Poisson 
equation on a cube

(a) Matrix Market

Execution times (in seconds) of 1000 
iterations

5.0618.5740.7878.83156.27BSR_21

4.875.6310.9221.5343.2585.60BSR_31

SunFire

eServer

Altix

SunFire

eServer

Altix

35.87134.96329.20791.901905.254523.94DIA
58.84176.88353.03692.931363.942666.34BSR_21
55.01159.38337.33650.931263.502542.74CRS

6.0216.5134.9271.85147.04DIA

7.6220.7240.6179.63154.50CRS
2.814.7216.4044.3489.19178.50DIA

b

4.979.5118.7637.4374.96149.50CRS
1.774.3415.1360.67168.63348.54BSR_22
2.525.3219.4687.16212.39428.13CRS

0.621.021.974.4218.89BSR_41
0.871.563.167.3224.11CRS

0.270.621.302.394.659.17BSR_41

a

0.681.432.715.2610.4720.8CRS
Format

32168421
Number of threads

• For the BSR format, the best block size differs for 
different matrices and machines
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Speed-up ratios

05101520253035404550
0 10 20 30 40Number of threadsSpeed-up ratio Altix(a,CRS)Altix(a,BSR)eServer(a,CRS)eServer(a,BSR)SunFire(a,CRS)SunFire(a,BSR)Altix(b,CRS)Altix(b,BSR)Altix(b,DIA)eServer(b,CRS)eServer(b,BSR)eServer(b,DIA)SunFire(b,CRS)SunFire(b,BSR)SunFire(b,DIA)ideal

• The parallelization speedups on all machines are nearly ideal in most cases.

• DIA format has super-linear speedups from a small number of threads 
compared with other storage formats.

Performance relative to CRS

0.00.51.01.52.02.53.0
1 2 4 8 16 32Number of threadsPerformance relative to CRS

s3dkq4m2 (Altix) s3dkq4m2 (eServer) s3dkq4m2 (SunFire)Poisson (Altix) Poisson (eServer) Poisson (SunFire)DIA (Altix) DIA (eServer) DIA (SunFire)
• The Altix has a higher relative performance for BSR compared with 

other machines.

Conversion Costs

• Assumptions:
– Tcrs : the execution times of MV in the CRS formats. 
– Ttgt : the execution times of MV target formats.
– Tconv : the execution times of the conversion from the   

CRS format to the target format.

• Conversion Costs

– If the number of MV ≧ Nth
then it is better to use the target format; otherwise
it is better to use CRS format without conversion.
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Threshold numbers of iterations Nth

451041082BSR_21

43067961685553BSR_31

SunFire

eServer

Altix

SunFire

eServer

Altix

131787DIA

BSR_21

3424334693DIA

833576DIA

b

11011246151820BSR_22

7567605156BSR_41

1326056525150BSR_41

a

Format
32168421

Number of threads

• For BSR, the value of Nth increases slightly and is approximately 60 times 
greater in the Altix and the eServer. 

• In the SunFire, the value of Nth increases greatly for eight threads or more.

Conclusions
• Our Implementations have attained satisfactory 

scalability. 
• The storage format has been observed to 

greatly affect the performance of matrix-vector 
products.
– Altix has a higher performance for BSR in this 

experiments.

– DIA format has a higher performance, if data is 
installed on the cache.

• The conversion of the storage format provides 
faster computation of the matrix-vector product.

Future Works

• Our next goal  is parallelization for 
distributed memory parallel machines 
through MPI and MPI-OpenMP hybrid 
parallelization.  

• We will also work toward high-
performance iterative linear solvers using 
these kernel routines and effective 
preconditioners for the solvers.
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