International Conference on Computational Methods (ICCM 2007)
April 4-6, 2007, Hiroshima, Japan

Numerical Simulations in the
SILC Matrix Computation Framework

Tamito KAJIYAMA (JST / University of Tokyo, Japan)
Akira NUKADA (JST / University of Tokyo, Japan)
Reiji SUDA (University of Tokyo / JST, Japan)
Hidehiko HASEGAWA (University of Tsukuba, Japan)
Akira NISHIDA (Chuo University / JST, Japan)

Outline

The SILC matrix computation framework

— Easy-to-use interface for matrix computation libraries
Proposal of two application modes for SILC

* Two applications in numerical simulations

— Cloth simulation in C

— MPS-based simulation in Java

« Experimental results
Concluding remarks

Overview of the SILC framework

» Simple Interface for Library Collections
— Independent of libraries, environments & languages
— Easy to use

» Three steps to use libraries
— Depositing data (matrices, vectors, etc.) to a server

— Making requests for computation by means of
mathematical expressions

— Fetching the results of computation if necessary

Depositing data

— T
"X=A\Db"
User program - > SILC server
(client)
V_/
Fetching results Matrix computation libraries
e

Example: Using SILC in C

Solve the initial value
problem of 1D diffusion
/* create matrices 4, C and vector xo */ equation below using the
Crank-Nicolson method:

silc_envelope_t A, C, X;

SILC_PUT(C'A™, &A);

SILC_PUT("C", &C); %:(:;Tf (120,0<x<7)
SILC_PUT('X™, &x); /*x*/ p=sinx (r=0,0<x<n)
for (k = 1; k <= n_steps; k++) 9=0 (t>0,x=0)
{ =0 (t>0,x=n)
SILC_EXEC("b = C * x™);
SILC_EXEC(*x = A \\ b™);

SILC_GET(&x, “X"); /*x */

/> output solution x; at time ¢, */

Functionalities of SILC

» Data structures for matrix computations
— Matrices (dense, band, sparse), vectors, etc.

» Math operators, functions, and subscript
—2-norm of vector x: sqrt(x" * x)
— 5x5 submatrix of A: A[1:5, 1:5]

* No loops and conditional branching

— These are realized with the languages you
use to write user programs for SILC

Main characteristics of SILC

« Independence from programming languages
— User programs for SILC in your favorite languages
 Independence from libraries and environments

— Using alternative libraries and environments requires
no modification in user programs

— Flexible combinations of client & server environments

User program (client) SILC server
Sequential Sequential
Sequential Shared-memory parallel (OpenMP)
Sequential Distributed parallel (MPI)
Distributed parallel (MPI) Distributed parallel (MPI)

Proposal of two application modes

e Limited application mode
— Use SILC only in the most time-consuming,
computationally intensive part of a program
» Comprehensive application mode

— Move all relevant data to a SILC server, and
implement overall simulations using SILC's
mathematical expressions

Abbreviations:
e LTD for the limited application mode
* CMP for the comprehensive application mode

Limited application mode

Use SILC only in the most time-consuming,
computationally intensive part of a program

* Pros
— Easy to apply (especially to existing user programs)
* Cons

— Smaller data size due to a limited amount of main
memory in client environments

— Frequent data communications (larger overheads)

Application #1

» Time-dependent simulation of cloth motion
— Mass-spring model
— Implicit Euler method
— Solving a sparse linear
system is necessary
for each time step
 Original code
— Sequential program in C
— Linear solver: CG method
— Visualization: OpenGL

Original code

For each time step:

1. Calculate force f and its derivatives of /ox and
of /ov (Jacobian matrices).

2. Solve a linear system AA4v = b, where
A={M—At2ﬂ—mﬁ}
OX ov

b ={fD +Atﬁv0}At
0ox

3. Update particle motion.
V=V, +Av
X=X, +AtV

New code in the LTD mode

Original code using Lis* New code using SILC

Comprehensive application mode

{LIS_MATRIX A; LIS_VECTOR b, dv; || |isilc_envelope_t A, b, dv;
for (k = 1; k <= n_steps; k++) for (k = 1; k <= n_steps; k++)
{

/* 1. Calculate f, 6f / &x and of / ov */ /* 1. Calculate f, 6f / dx and of / ov */

/*2.Solve Adv=h */ /*2.Solve Al =b */

lis_solve(A, b, dv, /*Av*/ [SILC_PUT("A", &A);
lis_params, | SILC_PUT("b", &b);
lis_options, | SILC_EXEC('dv = A \\ b");
lis_status); | SILC_GET(&dv, "dv'); /* v */

/* 3. Update particle motion */ /* 3. Update particle motion */

o }

Move all relevant data to a SILC server,
and implement overall simulations using
SILC's mathematical expressions

* An iterative solvers library written in C.

¢ Pros

— User programs are free from massive data
— Reduced data communications (smaller overheads)
* Cons

— Existing user programs may require a major rewrite

Computations in Application #1

* Force
f.:Z(f./+d,/)
Jjek
X, =X)
f, =kaX/ -X,|—1,)’7 (spring force)
‘x,—x,
d; =~h(v,-Vv;) (damping)
 Derivatives (Jacobian matrices)
a0 N o o
X, X, ov, ov,
ox ‘ o v
o . A o, . A
%, ox, v, o,

Elements of the derivatives

« Off-diagonal blocks (3x3 submatrices)

ﬁ:bl b, J—

(X, =x), =x)" | 4,

KT 2
%, ‘X/—X,‘ ‘X;_X,

~, Tk
oV

< Diagonal blocks (3x3 submatrices)

i i

76f’

of, Cof | of
ox _;{ 6x/}' v _;{

o)

 In SILC, write coarse-grain matrix computations
— Computing the blocks one after another is not a good

idea (too fine-grain to parallelize)

/* 1. Calculate f, of / ox and of / v */ ‘

SILC_EXECE"P =yY.L> >(< - YR™ X"%: "y Code in the CMP mode:
SILC_EXEC("'P = sparse(P_row, P_col, p, 3*s, $)"); | Al computations done
SILC_EXEC("z sgrt(diagvec(P* * P))"); b coar';e- rain matrix
SILC_EXEC('F P * (K_stiff *@ (z - L) 70 2)"); y _g
SILC_EXEC("q = Y_L * v = YR * v'); computations so as to
Q
d
£

SILC_EXEC(*'Q = sparse(P_row, P_col, q, 3*s, s)'); | be parallelized by a
SILC_EXEC(™ = Q * K_damp™); parallel SILC server.
SILC_EXEC('f = Sum_f * (Fij + dij) - M * g'");
SILC_EXEC(“'zhat = ones(s, 1) /@ z; Pzhat = P * zhat");
SILC_EXEC("U_L = sparse(U_L_row, U_col, Pzhat, 3*n, s)™);
SILC_EXEC("U_R = sparse(U_R_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("tmp = sqrt(zhat *@ K_stiff *@ L)™);
SILC_EXEC('C1 = diag(X * sqrt(K_stiff))™);

SILC_EXEC("C2 = diag(X * tmp); D = diag(tmp)™);
SILC_EXEC("A1 = Y_LT * C1 - Y_RT * C1; T1 = -Al * A1™");
SILC_EXEC("A2 = Y_LT * C2 - Y_RT * C2; T2 = -A2 * A2"");
SILC_EXEC("A3 = U_L * D - UR * D; T3 = -A3 * A3"");
SILC_EXEC("DfDx = T1 - T2 + T3");

/* 2.Solve Adv=b */

SILC_EXEC("A = M - (dt * dt) * DfDx - dt * DfDV™);
SILC_EXEC("b = dt * (f + dt * (DfDx * V))™);

SILC_EXEC("dv = A \\ b™);
/* 3. Update particle motion */ Solving 44v=b is done in the
SILC_EXEC("'v += dv *@ fixed™); same way as the LTD mode.
SILC_EXEC("x += dt * v'"); I

Experimental results

» 10* particles (7.998 x 108 springs), 100 time steps

e User programs on the same PC

» SILC servers on the same PC and on SGI Altix 3700
* LTD mode achieved x2 speedup using a parallel server
* CMP mode was slow due to sparse matrix multiplication

User program Original LTD mode CMP mode
Altix Altix
SlCeE - PC @Bthreads) | (8 threads)
Execution time [sec] 118.6 116.0 58.5 Not available
Speedup 1 x1.02 faster x2.03 faster x60 slower

PC: Intel Pentium 4 3.40 GHz, 1 GB RAM, Windows XP SP2

SGlI Altix 3700: Intel Itanium 2 1.3 GHz x 32, 32 GB RAM (cc-NUMA), RH Linux AS 2.1

Application #2

» Time-dependent simulation of interaction among
fluid, rigid and elastic bodies

— Based on the Moving
Particle Semi-implicit
(MPS) method

— Solving a sparse linear
system is necessary
for each time step

 Original code

— Multithreaded program
in pure Java

— Solver: ICCG method

Original code

For each time step (k=1, 2, 3, ...):

1. Calculate source terms and particle motion.
u'=ut+Ar [szu + g]k
ri=rf+Aru’

2. Solve pressure Poisson equation.

Explicitly calculated

Implicitly calculated

Solving this equation
by the ICCG method
takes more than 60%

o on

A2 n®

y2pki —

3. Calculate pressure gradient terms.

u’:fgvP"*‘
P

4. Correct particle motion.
utt =ut+u’

=t A

of the original code's
execution time.

Apply the LTD mode

Modified code in the LTD mode

» Added initialization and finalization

* Replaced the Java implementation of the ICCG
method by a call for a linear solver via SILC

SILC client = new SILCQ;
client.INIT(host, port);

CRS mat = new CRS(mat_size, mat_size, a);
ColumnVector vec = new ColumnVector(mat_size, b);
ColumnVector sol = new ColumnVector();
client.PUT("A™, mat);
client.PUT("b", vec);
client.EXEC("x = A \\ b™);

CRS and ColumnVector convert

Experimental results

» 956 particles (fluid: 296, rigid: 26, elastic: 64)
« Execution time of the first 300 time steps

100

80

The ICCG method
120 in Java (sequential) library in C

The Lis iterative solvers

(sequential, OpenMP)

60

Time [sec.]

40

20

- e user-defined data structures into Original LTD mode LTD mode . ;iw:n\‘/?/l’ 2““2;53;‘20 GHz, 1GB
:) PC) PC) Altx, 2 thread Windows
client.GET(sol, "x™); SILC's ones. . 5(0 2; 1(1 1; (”Xu ;lrea 9| . SGi Alix 3700; Intl tanium 2 1.3
- olve Ax:! GHz x 32, 32 GB RAM (cc-NUMA),
client.FINALIZEQ); Eomer 50.00 58.30 58.26 RH Linux AS 2.1
Discussion Discussion (cont’d)

* What are these case studies intended for?

* Review: Basic ideas of SILC

— User programs make computation requests
using mathematical expressions

— Parallel SILC servers fulfill the computation
requests efficiently

— Performance gain by parallel computation at
the cost of data communications

Our question: How should
SILC be designed?

From users’ viewpoint: How
should users employ SILC?

» SILC servers should be
able to properly parallelize
computation requests

» SILC’s client API should
be designed so that only
parallelizable computation
requests can be made

¢ Users should make
computation requests so
that SILC servers can
parallelize them

o

A 4

Feedback from the present case studies

Summary

» Two application modes for SILC
— Limited application mode
» Ease of use
— Comprehensive application mode
« Data-free user programs
* Reduced data communications
» Applied to cloth simulation in C and MPS-
based simulation in Java
— Feedback on design issues of SILC

Final remarks

¢ Future work

— MPS-based simulation in the CMP mode
— Analysis of various implementation choices in

the CMP mode

— More SILC applications in this & other areas

« Acknowledgment

— Koji KOJIMA (University of Tokyo) for kindly
providing the original Java code of the MPS-

based simulation

Advertisement

» SILC v1.2 is freely available at

http://ssi.is.s.u-tokyo.ac.jp/silc/

— Source (Unix/Linux, Mac OS X, Windows)
— Precompiled binary package for Windows
— Documentation, sample programs

