高速な4倍精度演算を用いた クリロフ部分空間法の安定化

小武守 恒(JST/東京大学) 藤井昭宏(工学院大学) 長谷川 秀彦(筑波大学) 西田 晃(中央大学・JST)

はじめに

- 大規模疎行列に対する線型方程式Ax=bを解く
- クリロフ部分空間法は丸め誤差の影響で収 東までに多くの反復が必要または停滞
- 収束の改善には高精度演算,例えば4倍精 度演算が有効であるが,計算コスト大
- 反復解法ライブラリLisに高速な4倍精度演算 を実装
- 倍精度演算と比較して収束が安定することを 確かめる

Lisでの倍精度演算実装方針

- 入力(係数行列A,右辺ベクトル b,初期ベクトル x₀)は倍精度
- 解法中の解 x, 補助ベクトル,スカラーは4倍精度
- 解の出力は倍精度,4倍精度でも可能
 すべてが4倍精度よりもメモリの削減が可能
- ユーザインタフェースを変えない
- 前処理行列Mの生成部分は倍精度演算
 前処理行列Mは係数行列Aの近似
- 反復中のMu = vの求解は4倍精度

- 反復解法: BiCG, GPBiCG
- 前処理: Jacobi, ILU(0), SSOR, Crout版 ILU(ILUC)
- 右辺ベクトルb

 解ベクトルx が x = (1,...,1)^Tとなるように設定
- 初期ベクトルx₀ = (0,...,0)^T
- 収束判定基準 $\|r_{k+1}\|_2 / \|r_0\|_2 \le 10^{-12}$
- 計算環境
 - CPU:Xeon 2.8GHz, OS: Linux 2.4.20smp 32Bit, Compiler: Intel C++ 7.0, Intel Fortran 9.0, -O3 -xW

行列A1(n=1,000,000)に対する 実行時間(BiCG法50回反復) 120 100 80 60 40 20 実行時間(秒) 3.2 Lis QUAD FORTRAN QUAL DOUBLE DOUBLE Lis QUAD FORTRAN QUAD 行列A(CRS) 4(n+nnz)+8nnz 4(n+nnz)+8nnz 4(n+nnz)+16nnz ベクトルb 8n 8n 16n ベクトルx 8n 16n 16n 補助ベクトル 6*8n 6*16n 6*16n 合計 121.9MB 175.8MB 221.6MB

行列A4の結果						
前処理	倍精度			Lis 4倍精度		
	sec.	iter.	TRR	sec.	iter.	TRR
BiCG						
Jacobi				26.58	1833	7.68E-15
ILU(0)				20.41	460	1.25E-14
SSOR				29.78	642	1.27E-14
ILUC				17.78	350	1.13E-14
GPBiCG						
Jacobi				34.50	1403	6.89E-15
ILU(0)	2.99	407	1.91E-14	18.43	225	1.17E-14
SSOR				42.53	500	1.02E-14
ILUC	11.71	364	1.67E-14	25.95	274	3.05E-15

