
1

1

A Performance Evaluation Model for the
SILC Matrix Computation Framework

Tamito KAJIYAMA, Akira NUKADA (JST CREST)
Reiji SUDA (The University of Tokyo)

Hidehiko HASEGAWA (University of Tsukuba)
Akira NISHIDA (Chuo University)

IFIP International Conference on Network and Parallel Computing (NPC 2006)
October 2–4, 2006, in Tokyo, Japan

2

Purpose

A model-based analysis of the benefits and cost
in the SILC framework

SILC: A simple interface for matrix computation
libraries based on a client-server architecture
1st benefit: Independence from libraries, computing
environments, programming languages
2nd benefit: Speedups
Cost: Data transfer between a client and a server

A performance evaluation model for SILC
How much speedup is expected if a fast library is
used via SILC at the cost of data transfer

3

Outline

Overview of the SILC framework
Performance evaluation model for SILC
Experiments

Verify the effectiveness of the model
Observations on the model's utility

Concluding remarks

4

Overview of the SILC framework

Simple Interface for Library Collections
Currently based on a client-server architecture

3 steps to use a library
Depositing data (e.g., matrices and vectors) to a server
Making requests for computation by means of textual
mathematical expressions
Fetching the results of computation requests

User program
(client) SILC server

Matrix computation libraries

Depositing input data

Fetching results

"x = A＼b"

5

Example: Solving a linear system Ax = b
in SILC

Independence from libraries
E.g., solvers are specified by server configurations

Independence from computing environments
Servers run in both sequential and parallel environments

Independence from programming languages
By means of textual mathematical expressions

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A ¥¥ b"); /* call for a solver (e.g., LAPACK) */
SILC_GET(&x, "x");

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A ¥¥ b"); /* call for a solver (e.g., LAPACK) */
SILC_GET(&x, "x");

6

Why a performance evaluation model?

Because use of fast libraries via SILC results in some
speedups even at the cost of data transfer
Matrix computations tend to take more time than data
communications of input/output data

LU factorization (dense): O(N3) flop vs. O(N2) data
N: dimension

The CG method (sparse): O(αN) flop vs. O(N) data
In the case of a sparse matrix with several non-zero diagonals
α : iteration count

Communication time is proportional to the amount of data
How much speedup at how much cost?

A performance evaluation model answers this question

2

7

Performance evaluation model for SILC

Estimates the performance ratio of P1 to P2
P1 uses L1 in the traditional programming style
P2 uses L2 through a SILC server
Both P1 and P2 perform the same matrix computations to
solve a given problem

User program
P1

Sequential library
L1

Parallel library
L2

SILC server

Client host (sequential) Server host (parallel)

User program
P2

Client host (sequential)

Traditional The SILC framework 8

Estimated performance ratio Tc/Ts

Tc : Execution time of P1 in a sequential client host
Ts : Execution time of P2 in the same client host together
with a SILC server in a parallel server host

Tc = X/C
Ts = X/S + Y/B + ZD

C, S : Performance rates of the client & server hosts (flops)
S depends on the degree of parallelism in the server host

B : Bandwidth (bps)
D : Latency (sec.)
X : Problem size (flop)
Y : Amount of data to be transferred (bits)
Z : Minimum number of pairs of send/recv system calls

9

How to determine parameter values

By running P1 (using L1) in the client host
C : Performance rate of the client host (flops)

By running P1 (using L2) in the server host
S : Performance rate of the server host (flops)

By means of a network performance benchmark
B : Bandwidth (bps)
D : Latency (sec.)

Determined by a given problem
X : Problem size (flop)
Y : Amount of data transfer (bits)
Z : Minimum number of pairs of send/recv calls

Performance of SILC_PUT & SILC_GET

Comparable to the maximum data transfer rate if
the data size is large

Example: Performance results in the case of transferring
a vector of dimension 107

The proportions of the PUT/GET data transfer rates to
the maximum data transfer rate (measured by Netperf)
shown in parentheses

884.4
(94.2%)

869.9
(92.4%)

Server side
GET

Client sideClient sideServer side

720.5
(97.3%)

880.4
(93.5%)

890.3
(94.8%)

728.7
(98.4%)altixssixc0

868.3
(92.2%)

856.1
(90.9%)ssixc1ssixc0

PUT
Client hostServer host

(Data transfer rates in Mbps; measured in the same GbE LAN.)

11

Experiments

Determine how accurately the proposed model
estimates the performance ratio of P1 to P2

Test problems
1. Solution of a linear system with the CG method
2. Dot product of two vectors
3. Solution of a linear system with LAPACK
4. Estimation of the condition number of a band matrix
5. The CG method in SILC's mathematical expressions

12

Experimental procedure

Run P1 to obtain the estimated performance ratio Tc / Ts

Run P2 to obtain the actual performance ratio of P1 to P2

Examine several cases of a problem to find a correlation
between estimated and actual performance ratios

P1

L1

Client host (sequential)

P1

L2

Server host (parallel)

Client host (sequential)

L2

Server host (parallel)

P2 SILC server

3

13

Test environments

1.24e-04
1.25e-04
1.25e-04
D (sec.)

709.04
094.13
700.31

B (Mbps)

GbEaltix (16 PEs)t42E5
Fast Ethernetssixc0 (2 PEs)t42E4

GbEssixc0 (2 PEs)t42E3
InterconnectServer hostClient hostEnvironment

IBM ThinkPad T42, Intel Pentium M 735 1.7 GHz,
Memory: 512 MB, L2 cache: 2 MB, Fedora Core 4

t42

SGI Altix 3700, Intel Itanium2 1.3 GHz × 32,
Memory: 32 GB, Red Hat Linux Advanced Server 2.1

altix

IBM eServer xSeries 335, dual Intel Xeon 2.8 GHz,
Memory: 1 GB, L2 cache: 512 KB, Red Hat Linux 8.0

ssixc0

SpecificationsHost

(All these hosts are in the same Gigabit Ethernet LAN.)
14

Problem 1: Solving a linear system Ax = b
with the CG method

Solve the following PDE using a finite difference
approximation on a uniform grid

−u′′(x) + 3u(x) = cos(πx), 0 < x < 1, u(0) = u(1), u′(0) = u′(1)
The resulting linear system Ax = b is SPD, so that the CG
method is used
A is an N × N sparse matrix with 3N non-zero elements
(stored in the CRS format)

Used libraries
L1: A sequential version of Lis
L2: An OpenMP-based parallel version of Lis

Lis: An iterative solvers library (free software)
With the maximum iteration count m specified

15

Problem 1: Solving a linear system Ax = b
with the CG method (cont'd)

Program P1 (traditional)
lis_solve(A, b, x, params, options, status);

Program P2 (for SILC)
SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A ¥¥ b"); /* call for lis_solve */
SILC_GET(&x, "x");

Test cases
Problem 1a. N = 104, in E4 (with Fast Ethernet)
Problem 1b. N = 104, in E3 (with GbE)
Problem 1c. N = 105, in E3 (with GbE)

176.18 175.08 176.52 176.38 C (Mflops)

257.51 259.43 259.77 257.94 S (Mflops)

42.72 42.72 42.72 42.72 Y (Mbits)

6,866.85 5,150.23 3,433.61 1,717.00 X (Mflop)

Problem 1c (E3)

386.95 386.89 385.06 385.73 C (Mflops)

838.07 833.99 820.72 808.33 S (Mflops)

4.27 4.27 4.27 4.27 Y (Mbits)

686.70 515.03 343.37 171.70 X (Mflop)

Problems 1a (E4) & 1b (E3)

16 16 16 16 Z

4,000 3,000 2,000 1,000 # of iterations m

Problem 1a (N = 104, FE) Problem 1b (N = 104, GbE)

Problem 1c (N = 105, GbE)

0.0

0.5

1.0

1.5

2.0

2.5

Number of iterations m

P
er

fo
rm

an
ce

 ra
tio

Estimated 2.0186 2.0909 2.1277 2.1447
Actual 1.7349 1.8425 1.9811 1.9602

1,000 2,000 3,000 4,000

Correlation = 0.9668
Relative error = 0.1181

0.0

0.5

1.0

1.5

2.0

2.5

Number of iterations m

P
er

fo
rm

an
ce

 ra
tio

Estimated 1.7133 1.9145 2.0020 2.0474
Actual 1.4897 1.7724 1.7973 1.8904

1,000 2,000 3,000 4,000

Correlation = 0.9829
Relative error = 0.1060

1.40

1.42

1.44

1.46

1.48

1.50

Number of iterations m

Pe
rfo

rm
an

ce
 ra

tio

Estimated 1.4487 1.4646 1.4771 1.4582
Actual 1.4267 1.4513 1.4615 1.4499

1,000 2,000 3,000 4,000

Correlation = 0.9304
Relative error = 0.0108

17

Summary of experimental results

A clear correlation of more than 0.93 between
estimated and actual performance ratios

Relative errors of less than 0.23
The proposed model can accurately estimate
the performance ratio of P1 to P2

~ 0.2099
~ 0.1025
~ 0.0847
~ 0.2340
~ 0.1181

Error

0.9995 ~2. Dot product of two vectors

0.9827 ~4. Estimation of the condition number of a band matrix
0.9977 ~5. The CG method in SILC's mathematical expressions

0.9987 ~3. Solution of a linear system with LAPACK

0.9304 ~1. Solution of a linear system with the CG method
CorrelationProblem

Observations

Communication overhead p (in seconds)
p = Y/B + ZD

The ratio p/Ts

The proportion of the communication overhead
to the execution time of P2

0.0630
0.0081
0.4559

p (sec.)
4,0003,0002,0001,000

35.75%42.47%52.15%68.22%Problem 1a (N = 104, FE)

Number of iterations m

0.24%0.32%0.47%0.94%Problem 1c (N = 105, GbE)
0.98%1.29%1.90%3.67%Problem 1b (N = 104, GbE)

4

19

Observations (cont'd)

The ratio S/C that satisfies Ts = Tc
S/C = 1 + pS/X

A server host needs to be faster than a client
host by the factor of S/C in order to cancel the
communication overhead

4,0003,0002,0001,000
1.0171 1.0230 1.0345 1.0685 Problem 1a (N = 104, FE)

Number of iterations m

1.0024 1.0032 1.0048 1.0095 Problem 1c (N = 105, GbE)
1.0099 1.0131 1.0194 1.0381 Problem 1b (N = 104, GbE)

20

Concluding remarks

A performance evaluation model for SILC
Estimates the speedup to be achieved by
using a fast library via SILC
Allows a quantitative analysis of the
communication overhead in SILC
Predicts how faster a server host needs to be
than a client host to offset the communication
overhead

A reasonable description of the cost and
benefits in the SILC framework

21

Future work: Application of the model

Forthcoming computing environments
10 Gigabit Ethernet, faster machines, etc.

WAN & Grid environments
The presented experiments dealt with only LAN
(low latency) & simple data communications

Distributed SILC
An MPI-based implementation of SILC for
distributed parallel computing environments

22

Acknowledgment

This research was supported by a grant
from the CREST program of Japan
Science and Technology Agency (JST)

SILC version 1.1 is freely available at
http://ssi.is.s.u-tokyo.ac.jp/silc/

