
FFTSS: A HIGH PERFORMANCE FAST FOURIER TRANSFORM LIBRARY

Akira NUKADA

CREST, JST
Dept. of Computer Science, University of Tokyo

ABSTRACT

In this paper, we introduce a new Fast Fourier Transform
(FFT) library. In developing this software, we focus on the
efficient execution of the floating-point operation instruc-
tions. To achieve high performance on various processors, it
is important to provide the source code which compilers can
optimize easily. The compilers provided by processor ven-
dors have powerful optimizer for loop sentense. The code
generated by them will runs very fast as long as the itera-
tion count of the inner most loop is large enough. In such
a case, the library outperforms other libraries even provided
by processor vendors. The FFTSS library package contains
many kinds of FFT kernel sets, and the best kernel set is
selected at runtime.

1. INTRODUCTION

Today, there are many FFT libraries in the world. Each
of them has its own characteristics. The processor vendors
provide FFT libraries such as IBM ESSL library for Pow-
erPC processors and Intel Math Kernel Library(MKL) for
Intel Processors. On the other hand, various open-source li-
braries are provided by many developers. Especially FFTW[1]
library is the most popular as cross-platform FFT library.

We advanced the research in the Scalable Software In-
frastructure(SSI) [2] Project, and released the FFTSS library
as a part of the products of the project.

2. CODING POLICY

Open-source libraries are usually described in the high level
programming languages such as C, Fortran. Users compile
them, and then execute their application programs. The op-
timization by the compilers greatly influence the execution
performance of the application.

The approach of the FFTSS library is to prepare the code
which the compilers can optimize easily. The library is writ-
ten mainly in C language. To give more information to the
compiler, const keyword and C99 keywords such as inline,
restrict, complex are used. Especially, the const and restrict
keywords are important for using the pointers to the arrays

in C programs. Using these keyword allows the compilers’
aggressive optimizations.

In addition, we can add an information that this is an
FFT program. A typical FFT program is described by the
following, double loop sentence.

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
for (j = 0; j < N2; j++)

{ compute kernel. }
}

The iteration count of the inner loop may becomes one or
small number. In such a case, the efficiency of the instruc-
tion execution is heavily degraded. We certainly know the
fact that the iteration count of the inner loop becomes smaller
and smaller, and finally it becomes one.

Traditionally, the technique of loop exchange is used
against this problem. If the iteration count of the inner loop
is smaller than that of the outer loop, then exchange the in-
ner and out loop.

But in case of the typical FFT program, the exchange in-
crease the load operations of twiddle factors. Instead of the
loop exchange, we decide to use loop unrolling of the in-
ner loop. The inner loop is unrolled only when the iteration
count is small enough.

In case of N2=1, the double loop is converted as follows.

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
{ compute kernel. }

}

In case of N2=4, the double loop is converted as follows.

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
{ compute kernel. }
{ compute kernel. }
{ compute kernel. }
{ compute kernel. }

}

Since these conversions increase the program size, the
unrolling for large N2 may causes I-cache misses.



3. SPECIAL INSTRUCTIONS

Processors support special instructions that greatly contribute
to the performance improvement. In case of some special
instructions, we need to write the code which explicitly use
those instructions. The FFTSS library currently supports
the following instructions.

3.1. Fused Multiply-Add(FMA) instructions

Many processors such as PowerPC, MIPS and IA-64 sup-
port the FMA instructions. An FMA execution unit multi-
plies two numbers and then adds a number to the result of
the multiplication. The FMA unit is occupied even when
only one of addition, subtraction or multiplication is to be
computed. For these processors, FFT kernels with smaller
number of FMA instructions are developed[3, 4, 5]. The
FFT kernels included in the FFTSS library are based on
Linzer’s idea.

3.2. SIMD instructions

Intel SSE2/SSE3 instructions are also supported. Especially
for Intel processors, the use of these instructions is in fact
indispensable.

3.3. PoewrPC440 Double Hammer FPU

PowerPC440 Double Hammer FPU[6] is installed in the su-
per computer BlueGene. The processor core has two FPU
units and both of them are controlled by a series of instruc-
tions like SIMD instructions.

4. RADIX-8 KERNEL

Fig.1 shows conventional radix-8 FFT kernel. In conven-
tional radix-8 kernel, input data are multiplied by twiddle
factors, and then 8-point FFT is computed.

The radix-8 kernels used in the FFTSS library are based
on the different radix-8 kernel described inFig.2.

The new radix-8 kernel does not decrease the number
of floating-point operations compared with the conventional
one. The difference between them is the timings of the mul-
tiplications of the twiddle factors. In case of the conven-
tional one, all multiplications concentrate on the first butter-
fly stage(left in the figure). This causes the congestion of
the load instruction. On the other hand, multiplications are
distributed to the first and second butterfly stages in case of
the new kernel.

Linzer’s radix-8 kernel for FMA is based on the con-
ventional radix-8 kernel. The new radix-8 kernel also can
be converted into FMA-style in the same manner. For pro-
cessors with the FMA instructions, we prepare the kernels
based on the new radix-8 kernel.

in(0)

in(4)

in(2)

in(6)

in(1)

in(5)

in(3)

in(7)

ω4j
N

ω2j
N

ω6j
N

ωj
N

ω5j
N

ω3j
N

ω7j
N ©©©©

©©©©

©©©©

©©©©

HHHH

HHHH

HHHH

HHHH

−i

−i

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

ω1
8

−i

ω3
8 ¢

¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

out(0)

out(1)

out(2)

out(3)

out(4)

out(5)

out(6)

out(7)

Fig. 1. Conventional radix-8 FFT kernel

in(0)

in(4)

in(2)

in(6)

in(1)

in(5)

in(3)

in(7)

ω2j
N

ω4j
N

ω6j
N

ω4j
N

ω4j
N ©©©©

©©©©

©©©©

©©©©

HHHH

HHHH

HHHH

HHHH

−i

ωj
N

ωj
Nω1

8

ω3j
N

ω3j
N ω3

8

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ −i

−i ¢
¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢
¢
¢

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

out(0)

out(1)

out(2)

out(3)

out(4)

out(5)

out(6)

out(7)

Fig. 2. New radix-8 FFT kernel



5. TWIDDLE FACTOR TABLES

In general, we prepare trigonometric tables called ’twiddle
factor tables’ required in computing FFT. The sizes of the
tables are listed inTable 1.

The conventional radix-8 kernel requires the twiddle fac-
tor tables only for radix-8. On the other hand, the new
radix-8 kernel uses same twiddle factor tables as those of
the radix-4 kernels. This is because the new radix-8 ker-
nel consists of a radix-4 kernel, two radix-2 kernels and two
split-radix[7] kernels. All of them are subsets of the radix-4
kernel. This makes it easy to use radix-4 and radix-8 ker-
nels mixing it. In the implementation of the FFTSS library,
powers of two transforms are computed with radix-4 and
radix-8 kernels. In such a case, it becomes the advantage
that they can use the shared twiddle factor tables.

The table for the FMA kernels used in the FFTSS library
is described below.

wn(2k) = cos(2πk/N)/ sin(2πk/N)
0 ≤ k < N/2

wn(2k + 1) = sin(2πk/N)
0 ≤ k < N/2

wn(2k + 3N/2) = cos(6πk/N)/ sin(6πk/N)
0 ≤ k < N/4

wn(2k + 3N/2 + 1) = sin(6πk/N)/ sin(2πk/N)
0 ≤ k < N/4

In the radix-4 and radix-8 kernels for FMA,
cos(6πk/N)/ sin(6πk/N) and sin(6πk/N)/ sin(2πk/N)
are required at the same time. Therefore, this table is de-
signed to load the pair from a continuous address. That is
important not only for the processors with packed load in-
structions, but also for the efficient use of the cache memory.

6. INTERFACE

The interfaces of the FFTSS library is designed to be al-
most compatible with those of FFTW library. We provide
a header file ’fftw3compat.h’ for FFTW users. If you have
application programs written for fftw3, the porting to the
FFTSS library is very simple. All you have to do is to
change ’fftw3.h’ into ’fftw3compat.h’. Unfortunately, the
current version does not support all of the FFTW features.

The limitations of the current version is:

• The size of transform must be powers of two.

• Only one-dimensional transform is supported.

• Only double precision complex-to-complex transform
is supported.

As long as only the supported function is used, your appli-
cation will work well.

The package of the FFTSS library contains various FFT
kernel sets such as normal, FMA, SSE2, SSE3, etc. In the

subroutine ’fftssplan dft 1d()’, which creat a plan of one-
dimensional transform, the best kernel sets are selected by
measuring the performance of them actually.

To compute the powers of two transforms, the FFTSS li-
brary only uses radix-4 and radix-8 kernels. In case of latest
processors, one of them will be the best radix size, consid-
ering the bandwidth of the cache memory. We concern the
following four about the combination of them.

• priority on radix-4, radix-4 before radix-8.

• priority on radix-4, radix-8 before radix-4.

• priority on radix-8, radix-4 before radix-8.

• priority on radix-8, radix-8 before radix-4.

The other combinations are ignored to save the cost of cre-
ating plan.

7. PERFORMANCE EVALUATIONS

Fig.3shows the performances of FFTSS library, IBM ESSL
for Linux version 4.2, and FFTW library version 3.0.1. The
machine used in the evaluations is IBM OpenPower 710,
running SuSE Linux 9.x. Two Power5 1.65GHz(DualCore)
processors and 1GB memory are installed in the system.
But only one processor(one core) is used in the executions

For each library, the best compiler and compiler options
are selected. In case of FFTSS, IBM XL C compiler 7.0.1 is
used and CFLAGS is set to ’-O3 -qarch=auto -qtune=auto
-qansialias -qlanglvl=extc99’. In case of FFTW, gcc 4.0.1 is
used and CFLAGS is set to ’-O3 -fomit-frame-pointer -fno-
schedule-insns -fstrict-aliasing -mcpu=powerpc’, which is
defined by configure script.

Using these libraries, the times required to repeat the
backward and forward transforms300/log2N times are mea-
sured. We assume the number of floating-point operations
is 5N log2 N . The performances in Gflops are calculated
from them.

Since the Power5 processor has two FMA units, 1.65GHz
processor can execute 6.6G floating-point operations per sec-
ond.

The size of transform is from 256 to 8192. In this range,
the performance of the FFTSS library outperforms the other
libraries by maximum 18%.

8. CONCLUDING REMARKS

We have introduced the design and implementation of FFTSS
library. The development of this library is focused on how
to prepare the code which compilers can easily optimize.

We can assist the optimization of the compilers by giv-
ing many information we know, in various ways. As the



Table 1. The sizes of twiddle factor tables for computing anN -point FFT(N = 2m)
Normal Optimized for FMA

Radix-4 Radix-8 Radix-4 Linzer’s radix-8 New radix-8
cos(x) 3N/4 7N/8 N/2 3N/8 N/2
sin(x) 3N/4 7N/8 0 0 0
sin(x)/ cos(x) 0 0 3N/4 7N/8 3N/4
cos(3x)/ cos(x) 0 0 N/4 N/4 N/4
cos(5x)/ cos(x) 0 0 0 N/8 0
cos(7x)/ cos(x) 0 0 0 N/8 0
cos(x)/

√
2 0 0 0 N/8 0

Total 3N/2 7N/4 3N/2 15N/8 3N/2

0

0.5

1

1.5

2

2.5

3

256 512 1024 2048 4096 8192

SIZE

P
E
R
F
O
R
M
A
N
C
E
(
G
F
L
O
P
S
)

FFTSS ESSL 4.2 FFTW

Fig. 3. The performance comparison between FFTSS and
ESSL and FFTW.

result, the library achieved higher performance than the li-
brary provided by processor vendors.

The FFTSS library is available at the following URL.
http://ssi.is.s.u-tokyo.ac.jp/fftss/

ACKNOWLEDGEMENT

This work has been supported by CREST of JST(Japan Sci-
ence and Technology Agency).

9. REFERENCES

[1] Matteo Frigo and Steven G. Johnson, “The design and
implementation of FFTW3,”Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005, special issue on ”Pro-
gram Generation, Optimization, and Platform Adapta-
tion”.

[2] SSI Project, http://ssi.is.s.u-tokyo.ac.jp/.

[3] E. N. Linzer and E. Feig, “Implementation of Effi-
cient FFT Algorithms on Fused Multiply-Add Archi-
tectures,” IEEE Trans. Signal Processing, vol. 41, pp.
93–107, 1993.

[4] S. Goedecker, “Fast Radix 2,3,4 and 5 Kernels for Fast
Fourier Transformations on C omputers with Overlap-
ping Multiply-Add Instructions,”SIAM J. Sci. Comput.,
vol. 18, pp. 1605–1611, 1997.

[5] H. Karner and et al., “Multiply-Add Optimized FFT
Kernels,”Math. Models and Methods in Appl. Sci., vol.
11, pp. 105–117, 2001.

[6] C. D. Wait, “IBM PowerPC 440 FPU with complex-
arithmetic extensions,”IBM Journal of Research and
Development, vol. 49, no. 2/3, pp. 249–254, 2005.

[7] P. Duhamel and H. Hollmann, “Split-Radix FFT Algo-
rithm,” Electron. Lett., vol. 20, pp. 14–16, 1984.


