
Last Modified: 31/10/2006

FFTSS Library Users’
Guide

Akira Nukada (CREST, JST)
http://ssi.is.s.u-tokyo.ac.jp

http://ssi.is.s.u-tokyo.ac.jp/fftss/

Contents

1 Introduction 4

2 DFT 4

3 Installation 4
3.1 UNIX and Compatible Systems 5
3.2 Microsoft Windows . 5

3.2.1 Visual Studio . 5
3.2.2 Intel C/C++ Compiler 5
3.2.3 MinGW environment . 6

4 Building Applications 6
4.1 UNIX and compatible systems 6
4.2 Visual Studio . 6

5 Limitations 6

6 List of library functions 7
6.1 Memory Allocation . 7

6.1.1 fftss malloc . 7
6.1.2 fftss free . 7

6.2 Creating Plans . 7
6.2.1 fftss plan dft 1d . 7
6.2.2 fftss plan dft 2d . 7
6.2.3 fftss plan dft 3d . 8
6.2.4 List of Flags . 8

6.3 Executing Plans . 9
6.3.1 fftss execute . 9
6.3.2 fftss execute dft . 10

6.4 Destroying Plans . 10
6.4.1 fftss destroy plan . 10

6.5 Timer . 10
6.5.1 fftss get wtime . 10

6.6 Multi-Threading . 10
6.6.1 fftss init threads . 10
6.6.2 fftss plan with nthreads 10
6.6.3 fftss cleanup threads . 11

7 Multi-Threading 11

8 Compatibility with the FFTW library 12
8.1 Compatible Functions . 12
8.2 Compatible Flags . 13

9 List of FFT Kernels 13

10 Tested Platforms 14

1 Introduction

The FFTSS library is a Fast Fourier Transform (FFT) library distributed as an
open source software. This is one of the products of the Scalable Software In-
frastructure (SSI) project, which is supported by Core Research for Evolutional
Science and Technology (CREST) of Japan Science and Technology Agency
(JST).

The target of this library is high performance (high speed) on various com-
puting environments. This library package contains many kinds of FFT kernel
subroutines. The library executes all of them and selects the fastest one for the
target computing environment.

The interfaces of the library are similar to those of the FFTW library version
3.x. This makes it easy for the FFTW users to use our library. Porting to the
FFTSS library requires very small modification of the source code.

2 DFT

The one-dimensional DFT of length n in the FFTSS library actually computes
the forward transform

Yk =
n∑

j=0

Xj · e−2πjk
√
−1/n

and the backward transform

Yk =
n∑

j=0

Xj · e2πjk
√
−1/n.

X is the array of input complex data in double precision, and Y is the
output. The results computed by the FFTSS library are not scaled and are
compatible with the FFTW library.

The multi-dimentional transforms compute simply 1-D transform along each
dimension of the array.

3 Installation

The package of this library is distributed as source code. Users need to build
the library before using from application programs.

3.1 UNIX and Compatible Systems

To build the library software from the source package on UNIX or compatible
systems, the following three steps are required:
1. Run ‘configure’ script.
2. Run ‘make’.
3. And run ‘make install’ (optional).

The configure script of this library accepts all generic flags. In addition, the
flags listed below are also available.

--without-simd Do not use SIMD instructions.
--without-asm Do not use assembly codes.
--with-bg Build for IBM Blue Gene system. (cross build)
--with-bg-compat Enable FFT kernels for Blue Gene in compatible mode.
--with-recommended Set recommended CC and CFLAGS variables.
--enable-openmp Enable OpenMP.

You can also set CC and CFLAGS manually as follows.
$./configure CC=gcc CFLAGS=’-O3 -msse2’

3.2 Microsoft Windows

On Microsoft Windows systems, three ways are available to build the software.

3.2.1 Visual Studio

In the ’win32’ folder of the package, a solution file ‘fftss.sln’ is provided for
Visual Studio 2003 .NET. Open it, and edit the setting of compilers as you like.
If you have Visual Studio 2005 series, convert the solution file at first. Older
versions of Visual Studio are not supported.

3.2.2 Intel C/C++ Compiler

In ‘win32’ folder of the package, batch scripts for Intel C/C++ Compiler are in-
cluded. You run one of them on the ‘Command Prompt’ or corresponding ‘Build
Environment’ of the Intel C/C++ Compiler. The working directory must be
the ‘win32’ folder. If you want to change compiler options, edit those batch files
directly.

icl-x86.bat For Intel IA-32 Architecture. (32bit)
icl-amd64 For Intel EM64T or AMD64 Architecture. (64bit)
icl-ia64 For Intel IA-64 Architecture. (64bit)

3.2.3 MinGW environment

In MinGW environment, the configure script is usable as well as UNIX or com-
patible systems.

4 Building Applications

4.1 UNIX and compatible systems

In general, you need to

• add ”-I[path of the header file ‘fftss.h’]” to CFLAGS

• add ”-L[path of the library file ‘libfftss.a’] -lfftss” to LDFLAGS

to build your application with the FFTSS library.

4.2 Visual Studio

After building the entire binary of the FFTSS library using Visual Studio, a
library file ‘fftss.lib’ is found in ‘./libfftss/Release’ (or ‘./libfftss/Debug’). The
header file ‘fftss.h’ is found in ‘include’ folder. To use the FFTSS library with
your application, you should use these files by editing the properties of Visual
Studio project files.

5 Limitations

In the current version, the FFTSS library only includes complex-to-complex,
double precision (of floating-point numbers) routines. The length of 1-D trans-
forms must be powers of two. In case of the multi-dimensional transform, the
size of each dimension must be powers of two.

Since this library uses Stockham’s auto-sort algorithm, all of the FFT kernels
included in this library perform out-of-place transforms. Even if you request in-
place transform in FFTW style, the library allocates the buffer for out-of-place
transform internally.

6 List of library functions

6.1 Memory Allocation

6.1.1 fftss malloc

Syntax:
void *fftss malloc(long size);

fftss malloc() allocates size bytes and returns a pointer to the allocated
memory. The address returned by the function is always aligned to a 16 byte
boundary.

6.1.2 fftss free

Syntax:
void fftss free(void *ptr);

fftss free() frees the memory space pointed by ptr, which must have been
returned by a previous call to fftss malloc().

6.2 Creating Plans

6.2.1 fftss plan dft 1d

Syntax:
fftss plan fftss plan dft 1d(long n , double *in, double *out , long sign,
long flags);

fftss plan dft 1d() creates a plan for computing complex-to-complex dou-
ble precision one-dimensional transforms of length n. Real part of i-th element
of input sequence must be stored in in[i*2], and imaginary part must be stored
in in[i*2+1] respectively.

6.2.2 fftss plan dft 2d

Syntax:
fftss plan fftss plan dft 2d(long nx , long ny, long py , double *in, dou-
ble *out , long sign, long flags);

fftss plan dft 2d() creates a plan for computing complex-to-complex dou-
ble precision nx by ny two-dimensional transforms. Real part of element(x,y)

must be stored in in[x*2+y*py*2], and imaginary part must be stored in in[x*2+y*py*2+1]
respectively.

6.2.3 fftss plan dft 3d

Syntax:
fftss plan fftss plan dft 3d(long nx , long ny, long nz , long py, long pz
, double *in, double *out , long sign, long flags);

fftss plan dft 3d() creates a plan for computing complex-to-complex dou-
ble precision nx by ny by nz three-dimensional transforms. Real part of el-
ement(x,y,z) must be stored in in[x*2+y*py*2+z*pz*2], and imaginary part
must be stored in in[x*2+y*py*2+z*pz*2+1] respectively.

6.2.4 List of Flags

The following list shows available flags for creating plans for 1-D, 2-D and 3-D
transforms.

• FFTSS VERBOSE

This flag enables verbose mode. In general, application users do not re-
quire that. Using this flag, the name of selected FFT kernel is shown in
standard output.

• FFTSS MEASURE

This is default. In creating plans, the library executes all FFT kernels
available in the computing environment, and select the best one.

• FFTSS ESTIMATE

The library estimate the best FFT kernel for the computing environment
without any executions.

• FFTSS PATIENT

Same as FFTSS MEASURE.

• FFTSS EXHAUSTIVE

Same as FFTSS MEASURE.

• FFTSS NO SIMD

This flag disables the use of SIMD (or SIMOMD) instructions. Try this
flag if you have some trouble with the FFT kernels using SIMD instruc-
tions.

• FFTSS UNALIGNED

Specify if the input array is not aligned to a 16 byte boundary. The
alignments of the input and the output buffers are checked when creating
plans. If not aligned, this flag is automatically added. Therefore, this flag
is usually not necessary. You need to specify this flag only if all of the
conditions listed below are satisfied.

1. Aligned buffers are given when creating plans.

2. Unaligned buffers are used with fftss execute dft().

3. Selected FFT kernel requires the alignment.

Since the input and the output buffers should be aligned from the aspect of
performance, use of fftss malloc() is strongly recommended for memory
allocation.

• FFTSS DESTROY INPUT

This flag allows destruction of data in the input buffer. (default)

• FFTSS PRESERVE INPUT

The data in the input buffer is preserved, and working space will be allo-
cated by the library function for out-of-place transforms.

• FFTSS INOUT

When this flag is specified, the results of the transforms are returned to
the input buffer in. The output buffer out also must be specified because
it will be used for working space.

6.3 Executing Plans

6.3.1 fftss execute

Syntax:
void fftss execute(fftss plan p);

fftss execute() executes a plan p.

6.3.2 fftss execute dft

Syntax:
void fftss execute dft(fftss plan p , double *in, double *out);

fftss execute() executes a plan p. The input buffer in and output buffer
out are used instead of them specified when creating the plan p.

6.4 Destroying Plans

6.4.1 fftss destroy plan

Syntax:
void fftss destroy plan(fftss plan p);

fftss destroy plan() deallocates the plan p.

6.5 Timer

6.5.1 fftss get wtime

Syntax:
double fftss get wtime(void);

fftss get wtime() returns the current timestamp in second.

6.6 Multi-Threading

6.6.1 fftss init threads

Syntax:
int fftss init threads(void);

fftss init threads() function does nothing. This exists only for compati-
bility with FFTW3.

6.6.2 fftss plan with nthreads

Syntax:
void fftss plan with nthreads(int nthreads);

fftss plan with nthreads() sets the number of threads used for computa-
tion. Since the FFTSS library only supports the parallelization with OpenMP,
this function simply set the number of OpenMP threads using omp set num threads().

6.6.3 fftss cleanup threads

Syntax:
void fftss cleanup threads(void);

fftss cleanup threads() function does nothing. This exists only for com-
patibility with FFTW3.

7 Multi-Threading

The current version of the FFTSS library supports multi-threading with OpenMP.
To build the library for multi-threading, an OpenMP compiler is required, and
the compiler options required for OpenMP support must be added.

For example, build with Intel C/C++ Compiler is described below. The
option ’-openmp’ enables support for OpenMP, and ’-xP’ enables support for
Intel SSE3 instructions.
$./configure CC=icc CFLAGS=’-O3 -openmp -xP’

To specify the number of threads, the environment variable ’OMP NUM THREADS’
is used as well as other OpenMP applications. If it is not set, the number
of threads depends on the computing environment, and typically is equal to
one or the number of processors. In addition, you can set the number of
threads with omp set num threads() function. We provide a library func-
tion ‘fftss plan with nthreads()’ for compatibility with the FFTW library. This
library function simply calls the omp set num threads() function.

The number of threads must be set before creating plans because the work
space for each thread is allocated. If you need to use variable number of threads,
the maximum number of threads must be set when creating plans.

max_threads = omp_get_num_procs();

fftss_plan_with_nthreads(max_threads);

plan = fftss_plan_dft_2d(nx, ny, py, vin, vout,

FFTSS_FORWARD, FFTSS_MEASURE);

{ /* Initialize arrays. */ }

for (nthreads = 1; nthreads <= max_threads; nthreads ++) {

fftss_plan_with_nthreads(nthreads);

t = fftss_get_wtime();

fftss_execute(plan);

t = fftss_get_wtime() - t;

printf("%lf sec with %d thread(s).\n", t, nthreads);

}

8 Compatibility with the FFTW library

The interfaces of this library are similar to those of the FFTW library version
3.

The FFTW users can use the FFTSS library in compatible mode. Applica-
tion programs written for the FFTW library include header file ‘fftw3.h’. To
use the FFTSS library, users only need to change the name of the header file to
‘fftw3compat.h’.

In the header file ‘fftw3compat.h’, some macros are defined to convert the
source code for the FFTW library, and the header file ‘fftss.h’ is also included
in this file.

In the current version, only a subset of the FFTW3 library is available, which
are defined or declared in the header file ‘fftw3compat.h’.

8.1 Compatible Functions

• fftw malloc()

• fftw free()

• fftw plan dft 1d()

• fftw plan dft 2d()

• fftw plan dft 3d()

• fftw execute()

• fftw execute dft()

• fftw destroy plan()

• fftw init threads()

• fftw plan with nthreads()

• fftw cleanup threads()

8.2 Compatible Flags

• FFTW MEASURE

• FFTW ESTIMATE

• FFTW PATIENT

• FFTW EXHAUSTIVE

• FFTW NO SIMD

• FFTW PRESERVE INPUT

• FFTW DESTROY INPUT

• FFTW FORWARD

• FFTW BACKWARD

9 List of FFT Kernels

In this section, the list of available FFT kernels is shown. You can see the name
of the selected kernel by using FFTSS VERBOSE flag.

• normal
Normal implementation.

• FMA
An implementation of FFT kernels optimized for Fused Multiply-Add
(FMA) instructions.

• SSE2 (1)
An implementation with Intel SSE2 instructions.

• SSE2 (2)
An implementation with Intel SSE2 instructions. (UNPCKHPD/UNPCKLPD)

• SSE3
An implementation with Intel SSE3 instructions. (ADDSUBPD)

• SSE3 (H)
An implementation with Intel SSE3 instructions. (HADDPD/HSUBPD)

• C99 Complex
An implementation using C99 Complex data type.

• Blue Gene
An implementation for IBM Blue Gene.

• Blue Gene (PL)
An implementation for IBM Blue Gene (Software pipelined).

• Blue Gene asm
An implementation in assembly language for IBM Blue Gene.

• IA-64 asm
An implementation in assembly language for Intel IA-64 architecture.

10 Tested Platforms

Processor OS Compiler
UltraSPARC III Sun Solaris 9 Sun ONE Studio 11
Itanium2 Linux Intel C/C++ Compiler 9.1, gcc 4.0.1
PowerPC G5 Mac OS X 10.4 IBM XL C Compiler 6.0, gcc 4.0
POWER5 Linux IBM XL C Compiler 7.0, gcc 4.0.1
POWER4 AIX IBM XL C Compiler 6.0
PA-RISC HP-UX 11 Bundled C Compiler
PPC440FP2 Blue Gene CNK IBM XL C Compiler 7.0/8.0
Opteron Linux gcc 3.3.3, gcc 4.0.1
Pentium 4 Solaris 9 (IA-32) Sun ONE Studio 11, gcc 4.0.1
Xeon Linux Intel C/C++ Compiler 8.1/9.0/9.1, gcc
IA-32 Windows XP SP2 Visual Studio .NET 2003
IA-32 Windows XP SP2 Visual Studio 2005
IA-32 Windows XP SP2 Intel C/C++ Compiler 9.1
x64 Windows XP, 2003 Visual Studio .NET 2003
x64 Windows XP, 2003 Intel C/C++ Compiler for EM64T 9.1

	1 Introduction
	2 DFT
	3 Installation
	3.1 UNIX and Compatible Systems
	3.2 Microsoft Windows
	3.2.1 Visual Studio
	3.2.2 Intel C/C++ Compiler
	3.2.3 MinGW environment

	4 Building Applications
	4.1 UNIX and compatible systems
	4.2 Visual Studio

	5 Limitations
	6 List of library functions
	6.1 Memory Allocation
	6.1.1 fftss_malloc
	6.1.2 fftss_free

	6.2 Creating Plans
	6.2.1 fftss_plan_dft_1d
	6.2.2 fftss_plan_dft_2d
	6.2.3 fftss_plan_dft_3d
	6.2.4 List of Flags

	6.3 Executing Plans
	6.3.1 fftss_execute
	6.3.2 fftss_execute_dft

	6.4 Destroying Plans
	6.4.1 fftss_destroy_plan

	6.5 Timer
	6.5.1 fftss_get_wtime

	6.6 Multi-Threading
	6.6.1 fftss_init_threads
	6.6.2 fftss_plan_with_nthreads
	6.6.3 fftss_cleanup_threads

	7 Multi-Threading
	8 Compatibility with the FFTW library
	8.1 Compatible Functions
	8.2 Compatible Flags

	9 List of FFT Kernels
	10 Tested Platforms

