International Workshop on Automatic Performance Tuning (iWAPT 2007)
September 20-21, 2007, University of Tokyo, Tokyo, Japan

Toward Automatic Performance Tuning
for Numerical Simulations in the SILC
Matrix Computation Framework

Tamito KAJIYAMA (JST / University of Tokyo, Japan)
Akira NUKADA (JST / University of Tokyo, Japan)
Reiji SUDA (University of Tokyo / JST, Japan)
Hidehiko HASEGAWA (University of Tsukuba, Japan)
Akira NISHIDA (University of Tokyo / JST, Japan)

Outline

The SILC matrix computation framework

— Easy-to-use interface for matrix computation
libraries

Automatic performance tuning in SILC
— Performance modeling

— Related work

Experimental results

Concluding remarks

Numerical simulations

» A common feature: Appearance of PDEs

— Discretization of PDEs results in linear systems,
which are solved by linear solvers

+ Some simulations require only one linear system
to be solved
— E.g. Steady-state simulations in linear problems

» Others require many linear systems to be solved
repeatedly

— E.g. Steady-state simulations in nonlinear problems,
time-dependent simulations

Matrix computation libraries

» Key components of numerical simulations
* Problem: Using libraries is not easy
— Many libraries having different APIs
— Diversity of computing environments
— Interoperability issues of various programming
languages
* Solution: The SILC framework

Simple Interface for Library Collections

+ Benefits
— Independent of libraries, environments & languages
— Easy to use

* Three steps to use libraries
— Depositing data (matrices, vectors, etc.) to a server

— Making requests for computation by means of
mathematical expressions

— Fetching the results of computation if necessary

Depositing data

User program "x=A\b"
" —_—
(client) SILC server
-
-
Fetching results Matrix computation libraries
[

Example: Using SILC in C

Solve the initial value
problem of 2D diffusion
/* create matrices 4, C and vector u, */ equation below using the

SILC_PUT("A", &A); Crank-Nicolson method:

SILC_PUT("C", &C); QD28 2L wveo,

SILC_PUT("u", &u); /*u,*/ uCe9,0)=0, 150,

for (k = 1; k <= n_steps; k++) 1 ifx,ye(04,0.6)

{ ulx, 3, 0)= {0 otherwise
SILC_EXEC("b = C * u");
SILC_EXEC(“u = A \\ b"); ulx,y, 0.004)
SILC_GET(&u, "u™); /*u,*/

silc_envelope_t A, C, u;

/* output solution u, at time 7, */

Functionalities of SILC

 Data structures for matrix computations
— Matrices (dense, band, sparse), vectors, etc.

» Math operators, functions, and subscript
—2-norm of vector x: sqrt(x' * x)
— 5x5 submatrix of A: A[1:5, k:k+4]

* No loops and conditional branching

— These are realized with the languages used to
write user programs for SILC

Main characteristics of SILC

Independence from programming languages
— User programs for SILC in your favorite languages
* Independence from libraries and environments

— Using alternative libraries and environments requires
no modification in user programs

— Flexible combinations of client & server environments

User program (client) SILC server
Sequential Sequential
Sequential Shared-memory parallel (OpenMP)
Sequential Distributed parallel (MPI)
Distributed parallel (MPI) Distributed parallel (MPI)

Cost in SILC: Communication time

 Likely to be smaller than computation time

Matrix Time for solving a linear | Time for depositing A
(Solver) system Ax=b and b and fetching x
Dense
3 2
(LU decomposition) O(N?) O(N%)
Sparse
(CG method) 0(C2) 02)

(N: dimension, C: iteration count, Z: number of non-zero elements)

* Possible speedups by parallel computation even
at the cost of data communications

Automatic performance tuning (APT)

» SILC needs APT
— To achieve as much speedup as possible in order to
relatively minimize the cost of data communications
— Using all available processors (or threads) is not
always optimal
» SILC is an ideal framework in which APT is
implemented

— SILC servers can carry out various types of APT
independently of user programs

Purposes of the present research

» Performance modeling of time-dependent
simulations in SILC

* QOutline of an APT mechanism for SILC

» Assumptions

— A sequential user program, running with
— A shared-memory parallel SILC server

Performance modeling

» The execution time (in seconds) of a user
program is modeled as a function of p (the
number of threads) as follows:

Jp)=ap +bp+c
a/p . time for parallelized computations
bp : parallelization overhead
¢ : time for sequential computations
(a, b, c>0)

The least squares method

» Suppose we have measured the execution time
of the user program with » different numbers of
threads (e.g., p;=2-',i=1, ..., n)

Number of threads prlp| | Pa

Executiontime [sec.] | fi | fo | --- | Ja

» By using the least squares method, we can find
a, b, and ¢ that minimize

q=§l{f,~ ~f(p)Y

The optimal number of threads p

» With a performance model f(p), we can predict
the optimal number of threads p,, that leads to
the minimum execution time

+ Since >0, p,p satisfies
Gy
dp p
« By solving the equation for p, we have p = ./a/b
and thus
_ {LpJ it f(ph<rCpD
> p] otherwise

Proposed performance modeling

1. Measure the execution time of a user program
with different numbers of threads

2. Learn a performance model

fp)=ap+bp+c

with the 3 parameters a, b, and ¢ determined
by the least squares method

3. Predict the optimal number of threads p,,

Related work

+ Various approaches to detailed performance
modeling

+ E.g. Performance Analysis and Characterization
Environment (PACE) by Kerbyson et al.
— Semi-automated code analysis of user programs
— Predefined hardware models

 Our performance modeling is much simpler

— Due to the primary objective of SILC: Independence
from libraries, environments, and languages

Numerical experiments

» Purpose: Validation of the performance
modeling
» Example applications

1. Cloth simulation based on the implicit Euler
method

2. CFD simulation based on the Moving Particle
Semi-implicit (MPS) method

3. An initial value problem of the 2-dimensional
diffusion equation

Test environments

User programs (clients)

Parallel SILC server

Dell Dimension 8400
Intel Pentium 4 3.4 GHz,
1 GB RAM,
Microsoft Windows XP SP2

SGI Altix 3700
32 Intel Itanium 2 1.3 GHz,
32 GB RAM (cc-NUMA),
Red Hat Linux AS 2.1

MinGW (GCC 3.2.3)
-03 option enabled

Intel C Compiler 9.1
-03 option enabled

* Both machines in the same Gigabit Ethernet LAN

Validation criterion

* Relative error ¢, in the execution time ¢
measured with p,

where ., is the execution time measured
with the true optimal number of threads
(&re1 = 0 if poy is truly optimal)

Example #1

» Time-dependent simulation of cloth motion

— A mass-spring model for
representing cloth

— The implicit Euler method
for computing cloth motion

— A sparse linear system is
solved for each time step

— Solver: CG method in the
Lis iterative solvers library

— Visualization via OpenGL

Outline of the simulation #1

Do some initialization (defining cloth geometry, etc.)

For each time step:

1. Calculate force fand its derivatives of/dx and
Jf / ov (Jacobian matrices).

2. Solve a linear system 44v = b, where

A= {M—At2 al—Atg}
ox v

b:{f+Atalv}Al
ox

3. Update particle motion.
V< v+Ay

X < x+Aty

Force and its derivatives

* Force
=5 f+d,)
X, - X, L
f,=b, Qx/ —xl‘—l‘)‘x —x ‘ (spring force)
T
d;=—h(v,-v)) (damping)
+ Derivatives (Jacobian matrices)
o G A
0Ox, ox, ov, ov,
g_ g_
ox o ov '
a4 .. % g . A
0ox, ox, ov, ov,

Non-zero patterns of the derivatives

"\
AR
BRSO

Elements of the derivatives

+ Off-diagonal blocks (3x3 submatrices)
o, _p bl [1_(x,—x,)(x,—x,)’J &

=04 g =y
ox; ‘x,—xl‘ ov,

‘xr _x"l
+ Diagonal blocks (3x3 submatrices)

Ox, 0Ox; ov, ov,

+ All computations can be implemented by means
of SILC's mathematical expressions

7
/* 1. Calculate £, of / éx and of / av */ The body of the loop over time steps
SILC_EXEC("p = Y_L * x - Y_R * x");

SILC_EXEC("P = sparse(P_row, P_col, p, 3*s, s)");
SILC_EXEC("z sqrt(diagvec(P' * P))");
SILC_EXEC(" =P ¥ (Kstiff *@ (z - L) /@ 2)");
SILC_EXEC("q = Y_L * v - Y_R * v");

SILC_EXEC(" sparse(P_row, P_col, q, 3*s, s)");
SILC_EXEC("dij = Q * K damp™);

SILC_EXEC("f = sum_f * (fij + dij) - m * g");

SILC_EXEC("zhat = ones(s, 1) /@ z; Pzhat = P * zhat");
SILC_EXEC("U_L = sparse(U_L_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("U_R = sparse(U_R_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("tmp = sqrt(zhat *@ K_stiff *@ L)");
SILC_EXEC("C1l = diag(X * sqrt(K_stiff))");

SILC_EXEC("C2 = diag(X * tmp); D = diag(tmp)");
SILC_EXEC("Al = Y_LT * Cl - Y_RT * C1; T1 = -AL * ALl'");
SILC_EXEC("A2 = Y_LT * C2 - Y_RT * C2; T2 = -A2 * A2'");
SILC_EXEC("A3 = U_L * D - U_R * D; T3 = -A3 * A3'");
SILC_EXEC("DfDx = T1 - T2 + T3");

/* 2. Solve Adv=1b */

SILC_EXEC("A = M - (dt * dt) * Dfbx - dt * pfpbv");
SILC_EXEC("b = dt * (f + dt * (Dfpx * v))");
SILC_EXEC("dv = A \\ b");

/* 3. Update particle motion */
SILC_EXEC("v += dv *@ fixed");
SILC_EXEC("x += dt * v");

Example #1: Results

The execution time of the first 20 time steps
— Problem size: 1,024 particles (3,096 unknowns)

Number of threads 1 2 4 8 16
Execution time [sec.] 13.5 7.23 4.41 3.28 3.24

» Performance model
f(p)=12.540/p + 0.103p + 0.838 (¢ =1.12x107?)
+ The optimal number of threads p,, = 11
— The true optimal number of threads was equal to p,
— Relative error ¢, =0

Example #2

Simulation of incompressible flow based on the
Moving Particle Semi-implicit (MPS) method

— A sparse linear system is solved for each time step
— Linear solver: ICCG method in Lis

t=0[sec] t=0.15 t=03

Outline of the simulation #2

Do some initialization (generating particles, etc.)
For each time step (k=1, 2, 3, ...): Explicitly calculated

1. Calculate source terms and particle motion Implicitly calculated
u =ut + A [Wu+ gt

r=rf+Atu’

Discretizing the equation
results in a sparse linear
system, which is solved
by the ICCG method

2. Solve pressure Poisson equation

yepra o =n
A’

3. Calculate pressure gradient terms

w oAty pa .
P All computations can be

implemented by means
of SILC's mathematical
expressions

4. Correct particle motion
' =u +u

r =+ Ate'

Example #2: Results

The execution time of the first 200 time steps
— Problem size: 470 particles (470 unknowns)

Number of threads 1 2 4 8 16 32

Execution time [sec.] 29.4 19.6 14.4 121 12.2 20.5

Performance model

f(p)=23.467/p +0.402p + 6.103 (¢ =5.97x10°)
The optimal number of threads pyp = 8

— The true optimal number of threads was equal to p,
— Relative error ¢, =0

Example #3

Solve the following initial value problem using
the Crank-Nicolson method

ou o'u 0u
aumw _ou,ou
o ot oy’

1
u(x, y,0)= {0

u(0, y,) =u(l, y, 1) =u(x, 0, 1) =u(x, 1,7) =0

(t20,x,y€(0,1))

if x,ye(0.4,0.6)

otherwise

* Let t, = 0 be the initial time and 47> 0 be a time
interval, and find u; at ¢, =1¢,_, + At by solving
Allkz Cuk_l

Outline of the simulation #3

silc_envelope_t A, C, u;
/* create matrices 4, C and vector u, */

SILC_PUT("A", &A);
SILC_PUT("C", &QO);

Example #3: Results

* Popt IS @ccurate or & is small (< 10%) : OK
& IS large : NG (2 of 16)

Number of time steps

Eor (k = 1; k <= n_steps; k++) N=712 - v et AT,
SILC_EXEC("b = C * u"); w100 |00 rew o =
SILC_EXEC("u = A \\ b™); ; : - '

8(9 9(13 8 (11 8 (11
STLC_GET(&u, "u"); /*u.*/ ez 20 oo i o
/* output solution u, at time 7, */ N=2002 12(12) 12 (15) 12 (13) 12 (11)

0% 0.1% 1.0% 1.0%

} Upper: poy (the true optimal number of threads in parentheses)

Lower: Relative error & in the execution time measured with poy
APT mechanism for SILC Summary
+ Outline » Proposal of simple performance modeling

1. A server collects n samples of execution time with
different numbers of threads. For each number of
threads, timing is done m times and the shortest is
picked

2. The server learns a performance model using the
least squares method and predicts p,,

3. The server continues the simulation with the optimal
number of threads

* Openissue
— How to determine n and m

for time-dependent simulations in SILC
— Use of the least squares method
— Accurate prediction of pgp
* QOutline of an APT mechanism for SILC
» Future work
— Implementation of the APT mechanism
— How to determine the two parameters » and m

Advertisement

» SILC v1.2 is freely available at

http://ssi.is.s.u-tokyo.ac.jp/silc/

— Source (Unix/Linux, Windows, Mac OS X)
— Precompiled binary package for Windows
— Documentation, sample programs

