
1

Toward Automatic Performance Tuning
for Numerical Simulations in the SILC

Matrix Computation Framework

Tamito KAJIYAMA (JST / University of Tokyo, Japan)
Akira NUKADA (JST / University of Tokyo, Japan)

Reiji SUDA (University of Tokyo / JST, Japan)
Hidehiko HASEGAWA (University of Tsukuba, Japan)

Akira NISHIDA (University of Tokyo / JST, Japan)

International Workshop on Automatic Performance Tuning (iWAPT 2007)
September 20–21, 2007, University of Tokyo, Tokyo, Japan

Outline

• The SILC matrix computation framework
– Easy-to-use interface for matrix computation

libraries
• Automatic performance tuning in SILC

– Performance modeling
– Related work

• Experimental results
• Concluding remarks

Numerical simulations

• A common feature: Appearance of PDEs
– Discretization of PDEs results in linear systems,

which are solved by linear solvers
• Some simulations require only one linear system

to be solved
– E.g. Steady-state simulations in linear problems

• Others require many linear systems to be solved
repeatedly
– E.g. Steady-state simulations in nonlinear problems,

time-dependent simulations

Matrix computation libraries

• Key components of numerical simulations
• Problem: Using libraries is not easy

– Many libraries having different APIs
– Diversity of computing environments
– Interoperability issues of various programming

languages
• Solution: The SILC framework

Simple Interface for Library Collections

• Benefits
– Independent of libraries, environments & languages
– Easy to use

• Three steps to use libraries
– Depositing data (matrices, vectors, etc.) to a server
– Making requests for computation by means of

mathematical expressions
– Fetching the results of computation if necessary

User program
(client) SILC server

Matrix computation libraries

Depositing data

Fetching results

"x = A＼b"

Example: Using SILC in C

⎩
⎨
⎧ ∈

=

>=

∈
∂
∂

+
∂
∂

=
∂
∂

otherwise0
)6.0,4.0(, if1

)0,,(

,0,0),,(

),1,0(,, 2

2

2

2

yx
yxu

ttyxu

yx
y
u

x
u

t
u

silc_envelope_t A, C, u;

/* create matrices A, C and vector u0 */

SILC_PUT("A", &A);

SILC_PUT("C", &C);

SILC_PUT("u", &u); /* u0 */

for (k = 1; k <= n_steps; k++)

{

SILC_EXEC("b = C * u");

SILC_EXEC(“u = A ∖ ∖ b");
SILC_GET(&u, "u"); /* uk */

/* output solution uk at time tk */

}

silc_envelope_t A, C, u;

/* create matrices A, C and vector u0 */

SILC_PUT("A", &A);

SILC_PUT("C", &C);

SILC_PUT("u", &u); /* u0 */

for (k = 1; k <= n_steps; k++)

{

SILC_EXEC("b = C * u");

SILC_EXEC(“u = A ∖ ∖ b");
SILC_GET(&u, "u"); /* uk */

/* output solution uk at time tk */

}

Solve the initial value
problem of 2D diffusion
equation below using the
Crank-Nicolson method:

0

0.2

0.4

0.6

0.8

1

x
y

u(x, y, 0.004)

2

Functionalities of SILC

• Data structures for matrix computations
– Matrices (dense, band, sparse), vectors, etc.

• Math operators, functions, and subscript
– 2-norm of vector x: sqrt(x' * x)

– 5×5 submatrix of A: A[1:5, k:k+4]

• No loops and conditional branching
– These are realized with the languages used to

write user programs for SILC

Main characteristics of SILC

• Independence from programming languages
– User programs for SILC in your favorite languages

• Independence from libraries and environments
– Using alternative libraries and environments requires

no modification in user programs
– Flexible combinations of client & server environments

Distributed parallel (MPI)Distributed parallel (MPI)
Distributed parallel (MPI)Sequential

Shared-memory parallel (OpenMP)Sequential
SequentialSequential
SILC serverUser program (client)

Cost in SILC: Communication time

• Likely to be smaller than computation time

• Possible speedups by parallel computation even
at the cost of data communications

(N : dimension, C : iteration count, Z : number of non-zero elements)

O(Z)O(CZ)Sparse
(CG method)

O(N2)O(N3)
Dense

(LU decomposition)

Time for depositing A
and b and fetching x

Time for solving a linear
system Ax = b

Matrix
(Solver)

Automatic performance tuning (APT)

• SILC needs APT
– To achieve as much speedup as possible in order to

relatively minimize the cost of data communications
– Using all available processors (or threads) is not

always optimal
• SILC is an ideal framework in which APT is

implemented
– SILC servers can carry out various types of APT

independently of user programs

Purposes of the present research

• Performance modeling of time-dependent
simulations in SILC

• Outline of an APT mechanism for SILC

• Assumptions
– A sequential user program, running with
– A shared-memory parallel SILC server

Performance modeling

• The execution time (in seconds) of a user
program is modeled as a function of p (the
number of threads) as follows:

f (p) = a/p + bp + c
a/p : time for parallelized computations
bp : parallelization overhead
c : time for sequential computations
(a, b, c > 0)

3

The least squares method

• Suppose we have measured the execution time
of the user program with n different numbers of
threads (e.g., pi = 2i −1, i = 1, …, n)

• By using the least squares method, we can find
a, b, and c that minimize

fn…f2f1Execution time [sec.]

pn…p2p1Number of threads

{ }∑
=

−=
n

i
ii pffq

1

2)(

The optimal number of threads popt

• With a performance model f (p), we can predict
the optimal number of threads popt that leads to
the minimum execution time

• Since f > 0, popt satisfies

• By solving the equation for p, we have
and thus

02 =+−= b
p
a

dp
df

bap =

⎣ ⎦ ⎣ ⎦ ⎡ ⎤
⎡ ⎤⎩

⎨
⎧ <

=
otherwise

)()(if
opt p

pfpfp
p

Proposed performance modeling

1. Measure the execution time of a user program
with different numbers of threads

2. Learn a performance model

with the 3 parameters a, b, and c determined
by the least squares method

3. Predict the optimal number of threads popt

f (p) = a/p + bp + c

Related work

• Various approaches to detailed performance
modeling

• E.g. Performance Analysis and Characterization
Environment (PACE) by Kerbyson et al.
– Semi-automated code analysis of user programs
– Predefined hardware models

• Our performance modeling is much simpler
– Due to the primary objective of SILC: Independence

from libraries, environments, and languages

Numerical experiments

• Purpose: Validation of the performance
modeling

• Example applications
1. Cloth simulation based on the implicit Euler

method
2. CFD simulation based on the Moving Particle

Semi-implicit (MPS) method
3. An initial value problem of the 2-dimensional

diffusion equation

Test environments

• Both machines in the same Gigabit Ethernet LAN

Intel C Compiler 9.1
-O3 option enabled

MinGW (GCC 3.2.3)
-O3 option enabled

SGI Altix 3700
32 Intel Itanium 2 1.3 GHz,
32 GB RAM (cc-NUMA),
Red Hat Linux AS 2.1

Dell Dimension 8400
Intel Pentium 4 3.4 GHz,
1 GB RAM,
Microsoft Windows XP SP2

Parallel SILC serverUser programs (clients)

4

Validation criterion

• Relative error ε rel in the execution time t
measured with popt

where ttrue is the execution time measured
with the true optimal number of threads
(ε rel = 0 if popt is truly optimal)

true

true
rel t

tt −
=ε

Example #1

• Time-dependent simulation of cloth motion
– A mass-spring model for

representing cloth
– The implicit Euler method

for computing cloth motion
– A sparse linear system is

solved for each time step
– Solver: CG method in the

Lis iterative solvers library
– Visualization via OpenGL

Outline of the simulation #1

1. Calculate force f and its derivatives ∂f /∂x and
∂f /∂v (Jacobian matrices).

1. Calculate force f and its derivatives ∂f /∂x and
∂f /∂v (Jacobian matrices).

2. Solve a linear system A∆v = b, where2. Solve a linear system A∆v = b, where

tt

ttMA

Δ
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

Δ+=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

Δ−
∂
∂

Δ−=

v
x
ffb

v
f

x
f2

3. Update particle motion.3. Update particle motion.

vxx
vvv
tΔ+←

Δ+←

Do some initialization (defining cloth geometry, etc.)
For each time step:

Force and its derivatives

• Force

• Derivatives (Jacobian matrices)

()
(damping))(

force) (spring

)(

jikij

ij

ij
kijkij

Pj
ijiji

h

lb

i

vvd
xx
xx

xxf

dff

−−=
−

−
−−=

+= ∑
∈

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

n

nn

n

n

nn

n

v
f

v
f

v
f

v
f

v
f

x
f

x
f

x
f

x
f

x
f

L

MOM

L

L

MOM

L

1

1

1

1

1

1

1

1

 ,

v
f

∂
∂

x
f

∂
∂

Non-zero patterns of the derivatives Elements of the derivatives
• Off-diagonal blocks (3×3 submatrices)

• Diagonal blocks (3×3 submatrices)

• All computations can be implemented by means
of SILC's mathematical expressions

IhIlbIb k
j

i

ij

T
ijij

ij

kk
k

j

i =
∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−−
−

−
−=

∂
∂

v
f

xx

xxxx
xxx

f ,
))((

2

∑∑
∈∈ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=
∂
∂

ii Pj j

i

i

i

Pj j

i

i

i

v
f

v
f

x
f

x
f ,

5

/* 1. Calculate f, ∂f / ∂x and ∂f / ∂v */
SILC_EXEC("p = Y_L * x - Y_R * x");
SILC_EXEC("P = sparse(P_row, P_col, p, 3*s, s)");
SILC_EXEC("z = sqrt(diagvec(P' * P))");
SILC_EXEC("fij = P * (K_stiff *@ (z - L) /@ z)");
SILC_EXEC("q = Y_L * v - Y_R * v");
SILC_EXEC("Q = sparse(P_row, P_col, q, 3*s, s)");
SILC_EXEC("dij = Q * K_damp");
SILC_EXEC("f = Sum_f * (fij + dij) - M * g");

SILC_EXEC("zhat = ones(s, 1) /@ z; Pzhat = P * zhat");
SILC_EXEC("U_L = sparse(U_L_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("U_R = sparse(U_R_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("tmp = sqrt(zhat *@ K_stiff *@ L)");
SILC_EXEC("C1 = diag(X * sqrt(K_stiff))");
SILC_EXEC("C2 = diag(X * tmp); D = diag(tmp)");
SILC_EXEC("A1 = Y_LT * C1 - Y_RT * C1; T1 = -A1 * A1'");
SILC_EXEC("A2 = Y_LT * C2 - Y_RT * C2; T2 = -A2 * A2'");
SILC_EXEC("A3 = U_L * D - U_R * D; T3 = -A3 * A3'");
SILC_EXEC("DfDx = T1 - T2 + T3");

/* 2. Solve A∆v = b */
SILC_EXEC("A = M - (dt * dt) * DfDx - dt * DfDv");
SILC_EXEC("b = dt * (f + dt * (DfDx * v))");
SILC_EXEC("dv = A ∖ ∖ b");

/* 3. Update particle motion */
SILC_EXEC("v += dv *@ fixed");
SILC_EXEC("x += dt * v");

/* 1. Calculate f, ∂f / ∂x and ∂f / ∂v */
SILC_EXEC("p = Y_L * x - Y_R * x");
SILC_EXEC("P = sparse(P_row, P_col, p, 3*s, s)");
SILC_EXEC("z = sqrt(diagvec(P' * P))");
SILC_EXEC("fij = P * (K_stiff *@ (z - L) /@ z)");
SILC_EXEC("q = Y_L * v - Y_R * v");
SILC_EXEC("Q = sparse(P_row, P_col, q, 3*s, s)");
SILC_EXEC("dij = Q * K_damp");
SILC_EXEC("f = Sum_f * (fij + dij) - M * g");

SILC_EXEC("zhat = ones(s, 1) /@ z; Pzhat = P * zhat");
SILC_EXEC("U_L = sparse(U_L_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("U_R = sparse(U_R_row, U_col, Pzhat, 3*n, s)");
SILC_EXEC("tmp = sqrt(zhat *@ K_stiff *@ L)");
SILC_EXEC("C1 = diag(X * sqrt(K_stiff))");
SILC_EXEC("C2 = diag(X * tmp); D = diag(tmp)");
SILC_EXEC("A1 = Y_LT * C1 - Y_RT * C1; T1 = -A1 * A1'");
SILC_EXEC("A2 = Y_LT * C2 - Y_RT * C2; T2 = -A2 * A2'");
SILC_EXEC("A3 = U_L * D - U_R * D; T3 = -A3 * A3'");
SILC_EXEC("DfDx = T1 - T2 + T3");

/* 2. Solve A∆v = b */
SILC_EXEC("A = M - (dt * dt) * DfDx - dt * DfDv");
SILC_EXEC("b = dt * (f + dt * (DfDx * v))");
SILC_EXEC("dv = A ∖ ∖ b");

/* 3. Update particle motion */
SILC_EXEC("v += dv *@ fixed");
SILC_EXEC("x += dt * v");

The body of the loop over time steps

Example #1: Results

• The execution time of the first 20 time steps
– Problem size: 1,024 particles (3,096 unknowns)

• Performance model
f (p) = 12.540/p + 0.103p + 0.838 (q = 1.12×10−2)

• The optimal number of threads popt = 11
– The true optimal number of threads was equal to popt

– Relative error ε rel = 0

13.5

1

3.243.284.417.23Execution time [sec.]

16842Number of threads

Example #2

• Simulation of incompressible flow based on the
Moving Particle Semi-implicit (MPS) method
– A sparse linear system is solved for each time step
– Linear solver: ICCG method in Lis

t = 0 [sec.] t = 0.15 t = 0.3

Outline of the simulation #2

1. Calculate source terms and particle motion1. Calculate source terms and particle motion
[]

**

2*
urr

guuu
t
t

k

kk

Δ+=

+∇Δ+= ν

2. Solve pressure Poisson equation2. Solve pressure Poisson equation

0

*

2
12

n
nn

t
Pk ′−

Δ
=∇ + ρ

3. Calculate pressure gradient terms3. Calculate pressure gradient terms
1+∇

Δ
−=′ kPt

ρ
u

4. Correct particle motion4. Correct particle motion

Explicitly calculated

Implicitly calculated

urr
uuu

′Δ+=

′+=
+

+

tk

k

*1

*1

Do some initialization (generating particles, etc.)
For each time step (k = 1, 2, 3, …):

All computations can be
implemented by means
of SILC's mathematical
expressions

Discretizing the equation
results in a sparse linear
system, which is solved
by the ICCG method

Example #2: Results

• The execution time of the first 200 time steps
– Problem size: 470 particles (470 unknowns)

• Performance model
f (p) = 23.467/p + 0.402p + 6.103 (q = 5.97×100)

• The optimal number of threads popt = 8
– The true optimal number of threads was equal to popt

– Relative error ε rel = 0

20.5

32

29.4

1

12.212.114.419.6Execution time [sec.]

16842Number of threads

Example #3

• Solve the following initial value problem using
the Crank-Nicolson method

• Let t0 = 0 be the initial time and Δt > 0 be a time
interval, and find uk at tk = tk−1 + Δt by solving

Auk = Cuk−1

0),1,(),0,(),,1(),,0(
otherwise0

)6.0,4.0(, if1
)0,,(

))1,0(,,0(2

2

2

2

====
⎩
⎨
⎧ ∈

=

∈≥
∂
∂

+
∂
∂

=
∂
∂

txutxutyutyu

yx
yxu

yxt
y
u

x
u

t
u

6

Outline of the simulation #3

silc_envelope_t A, C, u;

/* create matrices A, C and vector u0 */

SILC_PUT("A", &A);

SILC_PUT("C", &C);

SILC_PUT("u", &u); /* u0 */

for (k = 1; k <= n_steps; k++)

{

SILC_EXEC("b = C * u");

SILC_EXEC("u = A ∖ ∖ b");
SILC_GET(&u, "u"); /* uk */

/* output solution uk at time tk */

}

silc_envelope_t A, C, u;

/* create matrices A, C and vector u0 */

SILC_PUT("A", &A);

SILC_PUT("C", &C);

SILC_PUT("u", &u); /* u0 */

for (k = 1; k <= n_steps; k++)

{

SILC_EXEC("b = C * u");

SILC_EXEC("u = A ∖ ∖ b");
SILC_GET(&u, "u"); /* uk */

/* output solution uk at time tk */

}

k = 0

k = 20

k = 40

Example #3: Results

• popt is accurate or ε rel is small (< 10%) : OK
• ε rel is large : NG (2 of 16)

40302010

3 (8)
8.0%

3 (8)
8.6%

2 (6)
26.1%

4 (4)
0%

N = 712

12 (11)
1.0%

12 (13)
1.0%

12 (15)
0.1%

12 (12)
0%

N = 2002

8 (11)
2.9%

8 (11)
1.1%

9 (13)
1.9%

8 (9)
7.0%

N = 1422

5 (8)
5.7%

5 (7)
6.0%

5 (8)
7.3%

5 (10)
15.4%

N = 1002

Number of time steps

Upper: popt (the true optimal number of threads in parentheses)
Lower: Relative error ε rel in the execution time measured with popt

APT mechanism for SILC

• Outline
1. A server collects n samples of execution time with

different numbers of threads. For each number of
threads, timing is done m times and the shortest is
picked

2. The server learns a performance model using the
least squares method and predicts popt

3. The server continues the simulation with the optimal
number of threads

• Open issue
– How to determine n and m

Summary

• Proposal of simple performance modeling
for time-dependent simulations in SILC
– Use of the least squares method
– Accurate prediction of popt

• Outline of an APT mechanism for SILC
• Future work

– Implementation of the APT mechanism
– How to determine the two parameters n and m

Advertisement

• SILC v1.2 is freely available at

http://ssi.is.s.u-tokyo.ac.jp/silc/

– Source (Unix/Linux, Windows, Mac OS X)
– Precompiled binary package for Windows
– Documentation, sample programs

