
1

Performance Evaluation of Parallel
Sparse Matrix-Vector Products on

SGI Altix3700

H. Kotakemori [1], H. Hasegawa [2], T. Kajiyama [1]
A. Nukada [1], R. Suda [1], A. Nishida [1]

[1] University of Tokyo / CREST, JST
[2] University of Tsukuba / CREST, JST

Outline

• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

Introduction (1)

• Demands for reliable and portable parallel
numerical libraries are growing.

• Scalable Software Infrastructure Project
– Started as a 5-year national projects since

Nov. 2002.
– Development

• Portable implementation of the following libraries:
• Parallel eigen solvers
• Parallel linear system solvers
• Parallel fast integral transforms

� � � � � � � � � � � � 	 �

 � �
 � � � �

��� �

Scalable Software Infrastructure
SSISSI

Introduction (2)
• We are planning to develop a library of

iterative solvers, which includes a wide
range of iterative solvers, preconditioners,
and storage formats.

• The matrix-vector product is the most
important kernel operation for iterative
linear solvers.

• Its performance has a significant effect on
the performance of linear solvers.

Introduction (3)

• We discuss the performance of sparse
matrix-vector products on a cc-NUMA
machine SGI Altix3700.

• What’s problems :
– First-touch mechanism
– The performance of sparse matrix-vector

product for each storage format.
– conversion costs of the storage format.

Outline

• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

2

Sparse Matrix-Vector Product with OpenMP

• Sparse Matrix-Vector Product y=Ax
– The storage formats affect the performance

• Parallelize using OpenMP.
– OpenMP is designed for shared memory machines.

• Advantages
– a serial program can be parallelized one loop at a time.
– Compiler directives are used, so that the same code can be

compiled for serial or parallel execution.
– portability

• Special treatment for data locality, such as first-touch,
may be required, especially for cc-NUMA architectures
(will be discussed later).

Compressed Row Storage (CRS)

��
�
�
�

�

�

��
�
�
�

�

�

=

444341

3332
2221

11

A

A.value
A.index

A.ptr

4443413332222111
43132211

96421

8

4

=
=

nnz

n

Matrix-Vector Product for CRS

for(i=0; i<n; i++) {
t = 0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.value[j] * x[A.index[j]];

y[i] = t;
}

Matrix-Vector Product for CRS with OpenMP

#pragma omp parallel for private(i,j,t)
for(i=0; i<n; i++) {
t = 0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.value[j] * x[A.index[j]];

y[i] = t;
}

Block Sparse Row (BSR)

��
�
�
�

�

�

��
�
�
�

�

�

=

444341

3332
2221

11

A

A.value
A.bindex

A.bptr

33 43 0 440324102202111
211

421

r

c

2
2

3
2/

4

=
=

=
==

=

c
r

bnnz
rnnr

n

Matrix-Vecotr Product for BSR

for(i=0; i<nr; i++) {
t0 = t1 = 0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];
t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];

}
y[2*i+0] = t0; y[2*i+1] = t1;

}

3

Matrix-Vecotr Product for BSR with OpenMP

#pragma omp parallel for private(i,j,jj,t0,t1)
for(i=0; i<nr; i++) {

t0 = t1 = 0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];
t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];

}
y[2*i+0] = t0; y[2*i+1] = t1;

}

Outline

• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

NUMA Architecture

• With 16 or fewer threads, the threads are allocated to
different nodes using the dplace command.

• With 32 processors, the bus of each node is shared with
the two processors in the node.

Itanium2 1.3GHz Itanium2 1.3GHz

SHUB

FSB 6.4GB/s

DDR333DDR333DDR333DDR333 SDRAM

NUMAlink3 3.2GB/s

NUMAlink4 6.4GB/s

Total 10.8GB/s

Inter-node comm

NUMAlink4 NUMAlink3

16NODES

First-touch Mechanism

• Each page is stored in the memory of the
node with a processor that accesses the
page first.

• Data must be transferred via interconnects
when it is accessed by a processor out of
the node that owns the data.

• It is necessary to take into account the
first-touch mechanism for the construction
of each storage format.

Convert from CRS to BSR (Sequential)
for(bi=0;bi<nr;bi++) {

i = bi*r; ii = 0;
while(i+ii<n && ii<=r-1) {

for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {
......
Aout.bindex[kk] = Ain.index[k]/c; Aout.value[ij] = Ain.value[k]; kk = kk+1;

...... }
ii = ii+1;

}
Aout.bptr[bi] = kk;
......

}

��
�
�
�

�

�

��
�
�
�

�

�

=

4443
33

2221

11

A

A.value
A.bindex

A.bptr

4404333
2202111

21

321

CPU0 CPU
�

Convert from CRS to BSR (Parallel)
#pragma omp parallel for private(...)
for(bi=0;bi<nr;bi++) {

i = bi*r; ii = 0; kk = Aout.bptr[bi];
while(i+ii<n && ii<=r-1) {

for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {
......
Aout.bindex[kk] = Ain.index[k]/c; Aout.value[ij] = Ain.value[k]; kk = kk+1;

......
}
ii = ii+1;

}
......

}

��
�
�
�

�

�

��
�
�
�

�

�

=

4443
33

2221

11

A

A.value
A.bindex

A.bptr

33
2

43 0 442202111
1

21 3

CPU0 CPU
�

4

Control First-touch vs. NOT Control First-touch

• All data on a single node is poor performance.
• The data distribution is important for taking into account the first-

touch mechanism.

�
� �
� � �
� � �
� � �
� � �
� � �

� � � � � � � � ���� ��� !�" #%$ & ! ' ()
* +,-
./0 12
/0 3,4
5 0 24
,-12
6 47

8�9 : 9<; =?> 9 @ A?= ; B >CED D B 9 : 9<; =?9GF H = I D >J= ; B >

Summary : SGI Altix3700

• In order to obtain good performance, each
page should be assigned to the node with
the processor that most often accesses
the page.

• To control first-touch, we parallelize
K

the
storage format conversion routines.

Outline

• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

Experiments

• We examined
– times of parallel matrix-vector products
– speed-ups of parallel matrix-vector products
– storage format conversion costs

Test Matrices

• (a) to (e) : Matrix Market.
• (f) : FEM of the three-dimensional Poisson

equation on a cube.
• Ave : The average number of the non-zero

elements per row.

26.4626,463,5921,000,000Poisson(f)
53.304,820,89190,449s3dkq4m2(e)
70.652,043,49228,924bcsstk30(d)
65.691,091,36216,614fidap011(c)
83.69765,9449,152fidapm37(b)
20.55484,25623,560af23560(a)

Ave.NonzerosDimensionName

Execution times (in seconds) of
1000 iterations

2.814.7216.4044.3489.19178.50DIA

4.875.6310.9221.5343.2585.60BSR_31(f)

4.979.5118.7637.4374.96149.50CRS

0.270.621.302.394.659.17BSR_41
(e)

0.681.432.715.2610.4720.87CRS

0.140.230.611.302.344.48BSR_41
(d)

0.240.460.971.883.536.81CRS

0.090.130.240.651.302.51BSR_41

0.150.260.481.011.983.87CRS
(c)

0.090.140.240.571.192.24BSR_22

0.100.180.320.631.332.53CRS
(b)

0.070.090.150.280.721.46BSR_41
(a)

0.140.240.460.911.893.79CRS

FormatMatrix
32168421

Number of threads

5

Speed-up ratios

63.5137.8410.884.032.001.00DIA

17.5815.207.843.971.981.00BSR_31(f)

30.0715.727.973.991.991.00CRS

33.6314.737.043.831.971.00BSR_41
(e)

30.7214.617.703.971.991.00CRS

32.2119.227.343.451.911.00BSR_41
(d)

28.0714.917.003.631.931.00CRS

28.0318.7510.603.831.931.00BSR_41

26.5015.138.033.821.951.00CRS
(c)

25.1815.909.423.911.881.00BSR_22

24.1414.237.933.991.901.00CRS
(b)

21.6915.779.595.192.041.00BSR_41
(a)

27.1615.518.194.182.001.00CRS

FormatMatrix
32168421

Number of threads

Result of BSR_31 for matrix (f)

• The absolute performance for the two threads per node is lower than
the one thread per node.

L M N O

P Q N R M
R%S N M Q

S T N U R M N O Q

V Q N T V

Q O N M L
S L N P L U N Q Q P N LWVT

S TR T
Q T
P TM T
O T
V TL T
U T

T S T R T Q T P T
XZY [<\] ^E_ `Za b ^] c d e

f ghi
jkl mn
kl ohp
q l nphi
mn
r p
s tGuWvxw yWz vW{ |?} vWz�u%~W| v��� ~xw yWz vW{ | �x} vWz�u%~W| v

Result of BSR_31 for matrix (f)

• The speed-ups relative to the performance with two
threads are steady up to 32 threads.

�
�
� �
� �
�%�
�%�
�%�
�%�

� � � �%� ��� ������%�<� ���E�%�Z� �W� �%� � �

� ���
� ����
��� �

 � �%�W¡¢J£%�¤� �%� �%� �x¥ ����£W��� �¦Z§J�¤� �%� �%� � �x¥ �%�¨£W��� �

Summary : Sparse matrix-vector product

• The speed-ups have attained good results
for any storage format when the FSB was
dedicated to one CPU.

• The performance for the BSR format
causes a great decrease when the FSB is
shared with two CPUs.

• The cache and memory bus architectures
have been observed to influence the
optimum choice of the storage format.

Conversion Costs

• Assumptions:
– Tcrs : the execution times of MV in the CRS formats.
– Ttgt : the execution times of MV target formats.
– Tconv : the execution times of the conversion from the

CRS format to the target format.
• Conversion Costs

– If the number of MV © Nth
then it is better to use the target format; otherwise
it is better to use CRS format without conversion.

�
�

�
	
	

−
=

tgtcrs

conv
th TT

T
N

Conversion times Tconv (in milliseconds)

178.8165.7178.0270.3485.6907.4DIA

439.2303.8478.61073.51720.33370.8BSR_31
(f)

53.547.778.2148.5292.7575.9BSR_41(e)

22.220.235.969.8132.3247.6BSR_41(d)

14.111.117.835.468.1132.8BSR_41(c)

8.57.712.424.950.896.9BSR_22(b)

10.46.78.515.030.761.2BSR_41(a)

FormatMatrix
32168421

Number of threads

6

Threshold numbers of iterations Nth

ª
« ª
¬ ª ª
¬ « ª
 ª ª
 « ª
® ª ª
® « ª
¯ ª ª
¯ « ª
« ª ª

¬ ¯±°²¬ ³ ® ´Wµ ¶E· ¸ ¹%º » ¼ ½ ¹ ¸ ¾ ¿ À

ÁÂ ÃÄ
ÅÂ ÆÇÈ É
ÊËÌ ÄÃ
ÆÍ Î Ï Ä
ÃÐÏÎ ÆÉ
ÅÑ ÏÂ Ò ¾ Ó Ô%Õ%Ö × ¯W¬Ò · Ó Ô%Õ%Ö × Ò Ø ÓWÔ%Õ%Ö × ¯W¬Ò ¿ Ó Ô%Õ%Ö × ¯W¬Ò ¸ ÓWÔ%Õ%Ö × ¯W¬Ò » ÓWÔWÕ�Ö × ® ¬Ò » ÓWÙ%Ú Û

Summary : Conversion Costs

• The value of Nth changes slightly except
(b).

• The conversion of the storage format
provides faster computation of the matrix-
vector product
– If the number of the matrix-vector product is

100 times or more in this test matrices.

Conclusions (1)
• Our Implementations have attained satisfactory

scalability.
– It is necessary to take into account the first-touch

mechanism.
• The storage format has been observed to

greatly affect the performance of matrix-vector
products.
– In order to maximize the performance of a machine,

users must be able to choose an appropriate storage
format for each matrix.

• The conversion of the storage format provides
faster computation of the matrix-vector product
– If the number of the matrix-vector product is certain

times or more.

Conclusions (2)

• To take into account the First-touch
mechanism.
– we parallelized the storage format conversion

routines using OpenMP.

Future Works

• We are planning to port and to evaluate our
codes to other shared memory parallel
machines.

• Our next goal is parallelization for distributed
memory parallel machines through MPI and
MPI-OpenMP hybrid parallelization.

• We will also work toward high-performance
iterative linear solvers using these kernel
routines and effective preconditioners for the
solvers.

Acknowledgements

• This research was supported in part by
CREST “Development of Software
Infrastructure for Large Scale Scientific
Simulation”, Japan Science and
Technology Agency.

