
Supported by the CREST

program of the Japan Science

and Technology Agency (JST),

Japan.

Abstract. The objectives of the SSI project are (1) the development of a basic

library of solutions and algorithms required for large scale scientific simulations,

which have been developed separately in each field, and (2) its integration into

a scalable software infrastructure.

To download: http://www.ssisc.org/ SC07 Conference in Reno, Nevada, November 10-17, 2007

Contact: Project Leader Dr. Akira NISHIDA <devel@ssisc.org> Copyright © 2007 The SSI Project. All rights reserved.

Simple Interface for Library Collections (SILC)

is an easy-to-use application framework that allows

you to use various matrix computation libraries (e.g.,

BLAS/LAPACK, ScaLAPACK, and our Lis and FFTSS)

in different kinds of computing environments (including

desktop PCs, shared memory machines, clusters, and

vector machines) in a language-independent manner.

You don’t need to modify user programs

when using alternative libraries

and computing environments.

Libraries for
vector machines

Libraries for
PC clusters

Libraries
for shared
memory
machines

A user program in C for solving
Ax = b in the SILC framework

Costs in SILC

1. Deposit data (e.g., matrices and
 vectors) to a SILC server.
2. Send requests for computation
 using mathematical expressions in
 the form of text.
3. Fetch the results of computation.

silc_envelope_t A, b, x;

/* prepare matrix A and vector b */
SILC_PUT(”A”, &A);

SILC_PUT(”b”, &b);

SILC_EXEC(”x = A \\ b”);

SILC_GET(&x, ”x”);

SILC clients
(User programs)

Benefits
SILC provides independence
from libraries, environments,
and programming languages.
C, Fortran, Java, and Python
are currently supported.

Primary costs are of data transfer
between user programs and SILC
servers, although some speedup
is likely by means of fast matrix
computation libraries.

Scalable Performance with OpenMP

Auto-tuning of FFT kernels,
radices, and their order

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of threads

Performance (in Gflops)
of 4096x4096 2-D FFT
on SGI Altix 3700.

0.0

0.5

1.0

1.5

2.0

2.5

3.0
FFTW ESSL 4.2 FFTSS

256 512 1K 2K 4K

1-D FFT on POWER5 1.65GHz

Explicit data copy between the cache and main
memory for efficient use of the cache memory.

FFTSS is a fast Fourier Transform library for

various computing environments. To achieve

high performance, some processor specific

 instructions such as FMA,

 SSE2&3, and BlueGene/L

 SIMOMD are supported.

Some of the FFT kernels are unrolled and software pipelined to assist

compilers’ optimization. As a result, efficient binary codes are generated

and they outperform some vendors’ FFT libraries. The interface of the

library is almost compatible with FFTW3 which is the de facto standard

library. This makes it easy to port your applications written for FFTW.

FFTSS

Mixed-precision iterative methodQuadruple precision
Lis uses the “double-double” precision, together
with Intel SSE2 instructions for high performance.

We proposed the SWITCH algorithm for further
speed-ups by means of the double and quadruple
precisions. The quadruple precision is not used
for all the iterations, but only when it is necessary.

Fraction
52 bits

Exp
11 bits

Fraction
52 bits

Exp
11 bits

=

204.1
1204.1

1204.1
120

12

A

Toeplitz matrix (dimension 105)

BiCG without preconditioner
Convergence criteria 10-12 Lis DOUBLE Lis QUAD Fortran QUAD

0

5

10

15

20

25

Speed up
 x5.8

Execution times (sec.) for 50 iterations

DOUBLE QUAD SWITCH

Not converge
0

2

4

6

8

10

Speed up
 x2.8

Execution times (in seconds)

Lis is a Library of Iterative Solvers for linear systems, providing 20 iterative methods, 11 precondi-

tioners, and 11 sparse matrix storage formats. Both sequential and parallel computing environments

are supported, and double and quadruple precisions can be used through a common interface.

for (k=0; k<maximum iterations; k++) {

 Use double precision iterative method;

 if (nrm2<restart_tol) break;

}

Fill the work variables with zeros, except x;

for (k=k+1; k<maximum iterations; k++) {

 Use quadruple precision iterative method;

}

The SWITCH Algorithm

Lis

