
1

Distributed SILC: An easy-to-use
interface for MPI-based parallel

matrix computation libraries
Tamito KAJIYAMA, Akira NUKADA (JST CREST)

Reiji SUDA (The University of Tokyo)
Hidehiko HASEGAWA (University of Tsukuba)

Akira NISHIDA (Chuo University)

Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA '06)
Umeå, Sweden, June 18-21, 2006

Outline

Background
Ways of using matrix computation libraries

Distributed SILC
An easy-to-use interface for MPI-based parallel
matrix computation libraries

Examples of SILC applications
Performance results

Summary and future work

Background

The burden of using matrix computation libraries
Incompatible application programming interfaces
Various computing environments with their own “special”
libraries

Modifications to user programs are needed
When using alternative libraries and computing environments

Proposal of SILC
Simple Interface for Library Collections
A framework for using matrix computation libraries in a
language- and computing environment-independent manner

What is SILC ?

Basic ideas
Depositing input data (such as matrices and
vectors) to a separate memory space
Making requests for computation using
mathematical expressions in the form of text
Fetching the results of computation

User program Separate memory
space

Library collections

Depositing input data

Fetching results

"x = A＼b"

The traditional programming vs. SILC

A program that solves Ax = b using ScaLAPACK in C
double *A, *B;
int desc_A[9], desc_B[9], *ipiv, info;
/* create matrix A and vector B */
pdgesv(N, NRHS, A, IA, JA, desc_A, ipiv, B, IB, JB, desc_B,

&info);
/* solution X is stored in B */

A program that makes use of ScaLAPACK via SILC
silc_envelope_t A, b, x;
/* create matrix A and vector b */
SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A ∖∖ b"); /* call for pdgesv() for example */
SILC_GET(&x, "x");

Characteristics and benefits of SILC

Environment-independent
Sequential, shared-memory parallel, and
distributed parallel environments

Language-independent
Libraries and user programs in different
languages

Easy access to different libraries
Support for various solvers, matrix storage
formats, and arithmetic precisions

2

MPI-based SILC system

Currently based on a client-server model
A SILC server is an MPI-based parallel program
Support for both sequential user programs and
MPI-based parallel user programs

Data redistribution mechanism
The server keeps data in a distributed manner
Support for various data distributions

2D block-cyclic distribution,
1D row-block and column-block distributions, etc.

In different matrix storage formats
Dense, band, the CRS format, etc.

Data transfer: the sequential case

SILC_PUT SILC_GET

Received data Data to be sent

Distributed data

Sequential
user

program

Parallel
server

Distribution
of data

Distributed data

Sequential
user

program

Parallel
server

Collection
of data

Data transfer: the parallel case

SILC_PUT SILC_GET

Received data

Distributed data

Distribution
of data

Data to be sent

Distributed data

Collection
of data

Parallel
user

program

Parallel
server

Parallel
user

program

Parallel
server

Performance comparisons

The traditional programming vs. SILC
Examples of SILC applications
1. Solution of a dense system with ScaLAPACK

MPI-based parallel user programs
2. Solution of an initial-value problem of a PDE
3. Cloth simulation

Sequential user programs

Solving Ax = b with ScaLAPACK

Traditional
pdgesv(N, NRHS, A, IA, JA,

desc_A, ipiv, B, IB, JB,

desc_B, &info);

SILC
SILC_PUT("A", &A);

SILC_PUT("b", &b);

SILC_EXEC("x = A ∖∖ b");
SILC_GET(&x, "x");

GbE

User program
in SILC

SILC
server

Traditional
user program

MPI-based parallel user programs and SILC server
Matrix A in the dense format (2D block-cyclic distribution)

Tested environments

For both user programs
IBM OpenPower 710 (Power5 1.65 GHz × 4)

For SILC servers
Xeon cluster (Intel Xeon 2.8 GHz × 8)
SGI Altix 3700 (Intel Itanium2 1.3 GHz × 16)

Gigabit Ethernet (1 Gbps)
Computation in double precision real

3

Solving Ax = b with ScaLAPACK (results)

Traditional: elapsed time in pdgesv
SILC: elapsed time from connection until SILC_GET
Speedups (N = 4,096): 4.88 (Xeon cluster), 6.46 (Altix)

1e-01

1e+00

1e+01

1e+02

1e+03

512 1,024 2,048 4,096
Dimension N

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Traditional SILC (Xeon cluster, 8 PEs) SILC (Altix, 16 PEs)

GbE

User program
in SILC

SILC
server

Traditional
user program

(OpenPower)

(OpenPower) (Xeon cluster,
Altix)

An initial-value problem of a PDE

Solve the 1D time-dependent diffusion equation

By the Crank-Nicolson method
Solution of a sparse linear system Ax = b for each
time step using the CG method in Lis (an iterative
solvers library)
Matrix A is an N × N sparse matrix with 3N − 2 non-
zero elements, stored in the CRS format

) ,(and) ,(conditionsboundary
and) ,(condition initial the under

) ,(

πxtxt
πxtx

xt
xt

=>==>=
≤≤==

≤≤≥
∂
∂

=
∂
∂

00000
00sin

002

2

ϕϕ
ϕ

πϕϕ

An initial-value problem of a PDE (cont'd)

Traditional
Prepare A and x
For each time step {

Construct b from x
Solve Ax = b with lis_solve

}

SILC
Prepare A and x
SILC_PUT("A", &A);

For each time step {
Construct b from x
SILC_PUT("b", &b);

SILC_EXEC("x = A ∖∖ b");
SILC_GET(&x, "x");

}

GbE

User program
in SILC

SILC
server

Traditional
user program

Tested environments

For both user programs
IBM ThinkPad T42 (Intel Pentium M 1.7 GHz)

For SILC servers
Xeon cluster (Intel Xeon 2.8 GHz × 8)
SGI Altix 3700 (Intel Itanium2 1.3 GHz × 16)

Gigabit Ethernet (1 Gbps)
Computation in double precision real

An initial-value problem of a PDE (results)

Execution time (in seconds) of the first 20 time steps
Speedups (N = 80,000): 3.38 (Xeon cluster), 9.12 (Altix)

1e+00

1e+01

1e+02

1e+03

1e+04

10,000 20,000 40,000 80,000
Dimension N

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Traditional (1 PE) SILC (Xeon cluster, 8 PEs) SILC (Altix, 16 PEs)

GbE

User program
in SILC

SILC
server

Traditional
user program

(T42)

(T42) (Xeon cluster,
Altix)

Cloth simulation

A simulator of cloth based
on the mass-spring model
An implicit integrator by
Baraff & Witkin (1998)
Code written in Python
SciPy for solving a sparse
linear system A⊿v = b
OpenGL for rendering
the results of simulation
GUI for controlling the
simulation interactively

4

Cloth simulation (cont'd)

Traditional
For each time step {

Compute force f0

Construct A and b
Solve A⊿v = b with SciPy
Update velocity v
Update position x

}

SILC
For each time step {

Compute force f0

Construct A and b
SILC_PUT("A", &A);

SILC_PUT("b", &b);

SILC_EXEC("d = A ∖∖ b");
SILC_GET(&d, "d"); /* ⊿v */
Update velocity v
Update position x

}

GbE

User program
in SILC

SILC
server

Traditional
user program

Cloth simulation (results)

Execution time of the first 100 time steps
In the case of 82 particles (dimension 192)
Matrix A consists of 5,652 non-zero elements,
stored in the CRS format

5.14 023.71T42 / Altix (16 PEs)
3.08 039.51T42 / Xeon cluster (8 PEs)

SILC

1.00121.74T42Traditional
SpeedupTime (sec.)

GbE

User program
in SILC

SILC
server

Traditional
user program

Summary and future work

Distributed SILC: An easy-to-use interface for
MPI-based parallel matrix computation libraries

Good speedups even at the cost of data transfer
Support for sequential and parallel user programs
Easy access to alternative libraries and computing
environments (no need to modify user programs)

Future work
Ready-made modules for various MPI-based
parallel matrix computation libraries
Performance evaluation of the system

