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Abstract. We present an approach for the acceleration of the restarted Arnoldi iteration for the
computation of a number of eigenvalues of the standard eigenproblem Ax = λx. This study applies the
Chebyshev polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues
with far less complexity than the QR method. We also discuss the dependence of the convergence rate
of the restarted Arnoldi iteration on the distribution of spectrum. This research aims to compare this
algorithm with other state-of-the-art approaches.
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1. Introduction. The situation of the computation of eigenpairs for the standard

eigenproblem was not satisfactory, since they can not be treated by the direct approaches.
The QR method requires O(n3) arithmetic operations, which puts restrictions on n. For

nonsymmetric matrices, Arnoldi’s method [1], the two-sided Lanczos method [2], and
Davidson’s method [5] were available, although their behavior was still less understood.

In the past five years, there have been great progress in the further developments of these
methods. Arnoldi’s method, which had the defect of increasing computational complexity

per iteration step, was much improved by Saad [15] with the explicitly restarting technique,
by which the dimensions of the searchspaces can be kept modest. Although the restarted

Arnoldi iteration is quite effective, the dimension of the subspace is inevitably large, in
particular when the wanted eigenvalues are clustered. Moreover it favors the convergence

on the envelope of the spectrum. In this paper, we use the convex hull proposed for the
solution of the nonsymmetric linear system to accelerate the convergence of the restarted

Arnoldi iteration. We also mention the relatively recent variant developed by Sorensen [20],

the implicitly restarted Arnoldi iteration, which is a truncation of the standard implicitly
shifted Arnoldi iteration.

2. Background. We will give an outline of the methods referred to in this paper here.

The idea of the iteration techniques is explained briefly. We then describe the least-squares
based method, which were originally developed for solving the linear system [16][17].

2.1. The Arnoldi iteration. The Arnoldi approach involves the column-by-column
generation of an orthogonal Q such that QT AQ = H is the Hessenberg reduction[7]. If

Q = [q1, ..., ql] and we isolate the last term in the summation Aql =
∑l+1

i=1 hilql, then

hl+1,lql+1 = Aql −
l∑

i=1

hilql :≡ rl
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where hil = qT
i Aql for i = 1, ..., l. We assume that q1 is a given 2-norm starting vector.

The Arnoldi process computes an orthonormal basis for the Krylov subspace K(A, q1, l):

span{q1, ..., ql} = span{q1, Aq1, ..., A
l−1q1},

in which the map is represented by an upper Hessenberg matrix Hl.

1. h1,1 = (Aq1, q1);
2. for j = 1, ..., l − 1, put

rj = Aqj −
j∑

i=1

hijqi, hj+1,j =‖ rj ‖2,

qj+1 = h−1
j+1rj, hi,j+1 = (Aqj+1, qi), (i ≤ j + 1).

The situation after l steps is summarized by the l-step Arnoldi factorization

AQl = QlHl + rle
T
k

where ek = (0, ..., 0, 1)T and Hl = (hij). The algorithm terminates when rj = 0, which
is impossible if the minimal polynomial of A with respect to q1 is of degree ≥ l. If this

condition is satisfied, Hl is an irreducible Hessenberg matrix.
In the iterative variant [16], we start with an initial vector q1 and fix a moderate value

m, then compute the eigenvectors of Hm. We begin again, using as a starting vector a
linear combination of the eigenvectors.

2.2. Explicitly restarted Arnoldi iteration. The algorithm of the explicitly restarted

Arnoldi iteration is summarized in Table 1. The choice of m is usually a tradeoff between
the length of the reduction that may be tolerated and the rate of convergence. The accu-

racy of the Ritz values typically increases as m does. For most problems, the size of m is
determined experimentally.

Table 1

A block version of explicitly restarted Arnoldi reduction with polynomial acceleration

1. Choose V1 ∈ Rn×r.
2. For j = 1, ...,m − 1 do

Wj = AVj

For i = 1, ..., j do
Hi,j = V T

i Wj ; Wj = Wj − ViHi,j

end for
QjRj = Wj ; Vj+1 = Qj ; Hj+1,j = Rj

end for
3. Compute the eigenvalues of Hm = (Hi,j) ∈ Rmr×mr and select {λ̃1, ..., λ̃r} of
largest real parts.
4. Stop if their Ritz vectors X̃0 = {x̃1, ..., x̃r} satisfy the convergence criteria.
5. Define the iteration polynomial pk(λ) of degree k by Sp(Hm) − {λ̃1, ..., λ̃r}.
6. X̃k = pk(A)X̃0; QkRk = X̃k; V1 = Qk

7. Goto 2.



2.3. Implicitly restarted Arnoldi iteration. The ARPACK software package [9]
implements an implicitly restarted Arnoldi method. The scheme is called implicit because

the starting vector is updated with an implicitly shifted QR algorithm on the Hessenberg
matrix Hm. This method is motivated by the following result:

Let AXm = XmHm + rmeT
m be a length m Arnoldi reduction and φ(·) a polynomial of

degree p = m − k where k < m. Since

φ(A)Xk = Xmφ(Hm)[e1 e2 · · · ek]

holds, if we compute the QR factorization of φ(Hm)[e1 e2 · · · ek] = QkRk then the columns

of XmQk are an orthogonal basis for R(φ(A)Xk), where we denote by R(A) the range of
matrix A.

Table 2 gives the basic algorithm as implemented by ARPACK. Note that the conver-
gence rate of the method does not depend on the distribution of the spectrum.

Table 2

An implicitly restarted Arnoldi iteration as implemented by ARPACK

• Start: Build a length m Arnoldi reduction AXm = XmHm + rmeT
m with

the starting vector x1.
• Iteration: Until convergence

1. Compute the eigensystem HmSm = SmDm ordered with the k
wanted eigenvalues located in the leading portion of the
quasi-diagonal matrix Dm.

2. Perform m − k = p steps of the QR iteration with the unwanted
eigenvalues of Dm as shifts to obtain HmQm = QmH+

m.
3. Restart: Postmultiply the length m Arnoldi reduction with Qk to

obtain the length k Arnoldi reduction
AXmQk = X + mQkH+

k + r+
k eT

k . Qk represents the matrix
consisting of the leading k columns of Qm, and H+

k is the leading
principal submatrix of order k of H+

m.
4. Extend the length k Arnoldi reduction to a length m one.

3. Polynomial Accelerations Techniques. Suppose A is diagonalizable with eigen-
pairs (uj , λj) for j = 1, ..., n. If ψ(·) is some polynomial and we expand the current starting

vector x1 in terms of the basis of eigenvectors, then

ψ(A)x1 = u1ψ(λ1)ζ1 + · · · + unψ(λn)ζn

Assuming that the eigenpairs (ui, λi) are ordered so that the wanted k ones are at the
beginning of the expansion, we seek a polynomial such that

max
i=k+1,...,n

|ψ(λi)| < min
i=1,...,k

|ψ(λi)|.

Components in the direction of unwanted eigenvectors are dumped.

The acceleration techniques and hybrid methods presented by Saad [16] attempt to
improve the explicitly restarted Arnoldi iteration by approximately solving this min-max

problem. Motivated by Manteuffel’s scheme [12], Saad proposed the use of Chebyshev
polynomials. A Chebyshev polynomial ψ(A) on an ellipse containing the unwanted Ritz



values is applied to the restart vector in an attempt to accelerate convergence of the original
explicitly restarted Arnoldi iteration. The polynomial is applied with the use of the familiar

three-term recurrence.

3.1. The least-squares based method. The choice of ellipses as enclosing regions
in Chebyshev acceleration may be overly restrictive and ineffective if the shape of the

convex hull of the unwanted eigenvalues bears little resemblance with an ellipse. This has
spurred much research in which the acceleration polynomial is chosen so as to minimize

an L2 norm of the polynomial ψ on the boundary of the convex hull of the unwanted

eigenvalues with respect to some suitable weight function ω. The only restriction with
this technique is that the degree of the polynomial is limited because of cost and storage

requirements. This, however, is overcome by compounding low degree polynomials. The
stability of the computation is enhanced by employing a Chebyshev basis. It has been

shown that the least-squares based method for solving linear systems is competitive with
the ellipse based methods and are more reliable [17][13].

For convenience we can always normalize the polynomial so that ψ(λ1) = 1. The desired
polynomial satisfying the above constraint can be sought in the form ψn(λ) ≡ 1 − λsn(λ).

By the maximum principle, the maximum modulus of |1−λsn(λ)| is found on the boundary
of some region H of the complex plane that includes the spectrum of A and it is sufficient

to regard the problem as being defined on the boundary. We use the least squares residual
polynomial minimizing the L2 norm ‖ 1 − λsn(λ) ‖w with respect to some weight w(λ)

on the boundary of H [17]. Suppose that the μ + 1 points h0, h1, · · · , hμ constitute the
vertices of H. On each edge Eν , ν = 1, · · · , μ, of the convex hull, we choose a weight

function wν(λ). Denoting by cν the center of the νth edge and by dν the half width, i.e.,
cν = (hν + hν−1)/2, dν = (hν − hν−1)/2, the weight function on each edge is defined by

wν(λ) = 2|d2
ν − (λ − cν)

2|− 1
2 /π. The inner product on the space of complex polynomials is

defined by 〈p, q〉 =
∑μ

ν=1

∫
Eν

p(λ)q(λ)wν(λ)|dλ|. An algorithm using explicitly the modified
moments 〈ti(λ), tj(λ)〉, where {tj} is some suitable basis of polynomials, is developed for

the problem of computing the least squares polynomials in the complex plane.
We express the polynomial tj(λ) in terms of the Chebyshev polynomials tj(λ)

=
∑j

i=0 γ
(ν)
i,j Ti(ξ) where ξ = (λ − cν)/dν is real. The expansion coefficients γ

(ν)
i,j can be

computed easily from the three term recurrence of the polynomials βk+1tk+1(λ) = (λ −
αk)tk(λ)−δktk−1(λ). The problem mins∈ψn−1 ‖ 1−λsn(λ) ‖w is to find η = (η0, η1, · · · , ηn−1)

T

of sn(λ) =
∑n−1

i=0 ηiti(λ) so that J(η) =‖ 1 − λsn(λ) ‖w is minimum.

3.2. Approach. In the previous section we described the outline of the least-squares
based method on any arbitrary area. It has a difficulty on the application to other purposes

due to the constraint ψn(0) = 1.
We use the fact that the eigenvalue problem does not require any such condition to the

polynomial and propose a new simple algorithm to get the mini-max polynomial to accel-
erate the convergence of the projection method. The minimum property of the Chebyshev

functions described below is important to prove the optimality of this polynomial.
Let a non-negative weight function w(λ) be given in the interval a ≥ λ ≥ b. The

orthogonal polynomials p0(λ), p1(λ), · · ·, when multiplied by suitable factors C, possess a

minimum property:



the integral
∫
(λn + an−1λ

n−1 + · · · + a0)
2w(λ)dλ takes on its least value when the poly-

nomial in the integrand is Cpn(λ). The polynomial in the integrand may be written as

a linear combination of the pi(λ), in the form (Cpn(λ) + cn−1pn−1(λ) + · · · c0). Since

the functions pn(λ)
√

w(λ) are orthogonal, and in fact, orthogonal if the pi(λ) are appro-

priately defined, the integral is equal to C2 +
∑n−1

ν=0 c2
ν , which assumes its minimum at

c0 = c1 = · · · = cn−1 = 0.

Using the above property, we describe the new method to generate the coefficients of

the ortho-normal polynomials in terms of the Chebyshev weight below.
We use the three term recurrence βn+1pn+1(λ) = (λ − αn)pn(λ) − βnpn−1(λ), where

pi(λ) satisfies the ortho-normality. Because of the condition of the use of the Chebyshev

polynomial ψn(λ) =
∑n

i=0 γ
(ν)
i,n Ti[(λ − cν)/dν ], the constraints 〈ψ0, ψ0〉 = 2

∑μ
ν=1 |γ

(ν)
0,0 |2 =

1, 〈ψ1, ψ1〉 =
∑μ

ν=1[2|γ
(ν)
0,1 |2 + |γ(ν)

1,1 |2] = 1, and 〈ψ0, ψ1〉 = 2
∑μ

ν=1 γ
(ν)
0,0γ

(ν)
1,1 = 0 must hold.

Moreover each expansion of ψi(λ) at each edge must be consistent.
Using the three term recurrence of the Chebyshev polynomials, a similar recurrence

βk+1ψk+1(λ) = (λ−αk)ψk(λ)−δkψk−1(λ) on ψi(λ) holds. Denoting ξν by ξν = (λ − cν)/dν ,
the equation can be rewritten as

βk+1ψk+1(λ) = (dνξ + cν − αk)
k∑

i=0

γ
(ν)
i,k Ti(ξ) − δk

k−1∑
i=0

γ
(ν)
i,k−1Ti(ξ).

From the relations ξTi(ξ) = [Ti+1(ξ)+Ti−1(ξ)]/2, i > 0 and ξT0(ξ) = T1(ξ), it is expressed

by

∑
γiξTi(ξ) =

1

2
γ1T0(ξ)+(γ0+

1

2
γ2)T1(ξ)+· · ·+1

2
(γi−1+γi+1)Ti(ξ)+· · ·+1

2
(γn−1+γn+1)Tn(ξ),

where γn+1 = 0, and arranged into

βn+1ψn+1(λ) = dν [
γ

(ν)
1,n

2
T0(ξ) + (γ

(ν)
0,n +

γ
(ν)
2,n

2
)T1(ξ) + · · · +

n∑
i=2

1

2
(γ

(ν)
i−1,n + γ

(ν)
i+1,n)Ti(ξ)]

+(cν − αn)
n∑

i=0

γ
(ν)
i,n Ti(ξ) − δn

n−1∑
i=0

γ
(ν)
i,n−1Ti(ξ) (T−1 = T1).

Comparing the equation with ψn+1(λ) =
∑n+1

i=0 γ
(ν)
i,n+1Ti(ξ), we find the following relations

βn+1γ
(ν)
0,n+1 =

1

2
dνγ

(ν)
1,n + (cν − αn)γ

(ν)
0,n − δnγ

(ν)
0,n−1,

βn+1γ
(ν)
1,n+1 = dν(γ

(ν)
0,n +

1

2
γ

(ν)
2,n) + (cν − αn)γ

(ν)
1,n − δnγ

(ν)
1,n−1,

and

βn+1γ
(ν)
i,n+1 =

dν

2
[γ

(ν)
i+1,n + γ

(ν)
i−1,n] + (cν − αn)γ

(ν)
i,n − δnγ

(ν)
i,n−1



i = 2, ..., n + 1 (γ
(ν)
−1,n = γ

(ν)
1,n, γ

(ν)
i,n = 0 i > n).

Using the relation βk+1ψk+1(λ) = (λ − αk)ψk(λ) − δkψk−1(λ) and the orthogonality of
the Chebyshev polynomials, we derive

βk+1 = 〈ψk+1, ψk+1〉1/2 =
μ∑

ν=1

∫
Eν

ψk+1ψk+1wν(λ)|dλ| =
μ∑

ν=1

′∑k+1

i=0
γ

(ν)
i,k+1γ

(ν)
i,k+1

where we denote by
∑′n

i=0ai = 2a0 +
∑n

i=1 ai.

α and δ are computed similarly:

αk = 〈λψk, ψk〉 =
μ∑

ν=1

(cν

′∑k

i=0
γ

(ν)
i,k γ

(ν)
i,k + dν

′∑k

i=0
γ

(ν)
i,k γ

(ν)
i+1,k), δk = 〈λψk, ψk−1〉 =

μ∑
ν=1

dνυν

where υν = γ
(ν)
1,kγ

(ν)
0,k−1 + (γ

(ν)
0,k + 1

2
γ

(ν)
2,k )γ

(ν)
1,k−1 +

∑k−1
i=2

1
2
(γ

(ν)
i−1,k + γ

(ν)
i+1,k)γ

(ν)
i,k−1.

4. Evaluation.

4.1. Complexity of the algorithms. The cost in terms of the number of floating-
point operations are as follows: We denote by n, nz, m, r, k respectively the order of

the matrix, its number of nonzero entries, the number of block Arnoldi steps, the number
of required eigenvalues, and the degree of the Chebyshev polynomial. The block Arnoldi

method costs
∑m

j=1{2r nz + 4nr2j + 2r(r + 1)n} = 2rm nz + 2mr(mr + 2r + 1)n flops.
10r3m3 flops are required for the computation of the eigenvalues of Hm of order mr by

the QR method, r3O(m2) for the corresponding eigenvectors by the inverse iteration, and

2kr nz+O(n) for the Chebyshev iteration [7, 18]. The computation of the coefficients costs
approximately O(μk2) flops, where μ is the number of the vertices of the convex hull.

4.2. Numerical results. This section reports the results of the numerical experi-

ments of our method and evaluates its performance. The experiments are performed on
HP9000/720 using double precision.

We start with the decision of each element of the matrix given in the problem. In this
section, the scaled sequences of random numbers are assigned respectively to the real and

the imaginary parts of the eigenvalues except for those which are to be selected. The
matrices are block diagonals with 2 × 2 or 1 × 1 diagonal blocks. Each block is of the

form

[
a b/2

−2b a

]
to prevent the matrix to be normal and has eigenvalues a ± bi. It

is transformed by an orthogonal matrix generated from a matrix with random elements
by the Schmidt’s orthogonalization method. m and nc denote the order of the Arnoldi

method and the maximum order of the Chebyshev polynomials respectively. We compare
this algorithm with the double-shifted QR method. The error is computed by the L2 norm.

In this section we test the some variations of the distribution of the eigenvalues using the
matrices of order 50, the cases of λmax = 2, 1.5, and 1.1 while the distribution of the other

eigenvalues is 	e λ ∈ [0, 1], and 
m λ ∈ [−1, 1]. We denote the number of the iterations
by niter.



4.3. Comparison with other methods. Some test problems from the Harwell-
Boeing sparse matrix collection [4], the spectral portraits [6] of which are shown in Figure

1 and Figure 2, are solved using the block Arnoldi method. Ho’s algorithm is used for
reference.

The stopping criterion is based on the maximum of all computed residuals max1≤i≤r ‖
Axi − λixi ‖2 / ‖ xi ‖2≡ max1≤i≤r ‖ Hm+1,mYm,r,i ‖2 / ‖ Ym,i ‖2≤ ε. Ym,r,i and Ym,i stand

for the i-th column of the Ym,r and Ym.
Table 4 and Table 5 indicate that Ho’s algorithm shows better performance than the

orthogonality-based method in most conditions except for the cases where the moduli of the
necessary eigenvalues are much larger than those of the unnecessary eigenvalues. We may

derive from the result the poor optimality of the convex hull despite its low computation
cost.

Lehoucq and Scott [10] presented a software survey of large-scale eigenvalue methods

and comparative results. The Arnoldi-based software included the following three packages
ARNCHEB package [3], the ARPACK software package [11], and the Harwell Subroutine Library

code EB13 [19].
The ARNCHEB package provides the subroutine ARNOL, which implements an explicitly

restarted Arnoldi iteration. The code is based on the deflated polynomial accelerated
Arnoldi iteration and uses Chebyshev polynomial acceleration. The Harwell Subroutine

Library code EB13 implements the similar algorithm and also uses Ho’s Chebyshev polyno-
mial acceleration. The ARPACK provides subroutine DNAUPD that implements the implicitly

restarted Arnoldi iteration.
Some findings are reported on these methods:

• ARNCHEB gives reasonable results for computing a single eigenpair but it can strug-
gle on problems for which several eigenvalues are requested.

• ARPACK displays monotonic consistency and is generally the fastest and most de-
pendable of the codes studied, especially for small convergence tolerances and large

departures from normality. It uses dramatically fewer matrix-vector product than
ARNCHEB. However, its restarting strategy can be more expensive.

Moreover, from the results of Table 6 and Table 7, we can derive the strong dependency

of EB13 on the distribution of spectrum.

Table 3

The distribution of the other eigenvalues: 	e λ ∈ [0, 1], 
m λ ∈ [−1, 1]. CPU times (in seconds) by
HP9000/720.

maximum orthogonality-based Arnoldi QR
eigenvalues niter m nc error time niter m error time error time

2 2 5 15 3.6E-15 0.38 2 15 8.9E-16 0.57 5.1E-15 1.87
1.5 3 5 20 3.0E-15 0.70 3 15 3.7E-15 0.82 3.6E-15 1.85
1.1 5 10 20 2.9E-14 1.6 1 50 7.5E-13 3.93 5.2E-15 18.8

5. Parallelization. The parallelization of non-Hermitian eigenproblem is not com-
monly studied. A MIMD parallel implementation of the Arnoldi method is implemented

and mentioned in [14] for both tightly coupled as well as loosely coupled memory machines
with vector elementary processors and large granularity. This study has already shown



Table 4

Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection, which
was extracted from modeling of chemical engineering plants. The results by Ho’s algorithm (right) versus
those by the orthogonality-based method (left), with size of the basis 20, degree of the polynomial 20, and
block size 1, respectively, are listed. * denotes the algorithm fails to converge.

problem WEST0497 WEST0655 WEST0989 WEST2021
order of matrix 497 655 989 2021
number of entries 1727 2854 3537 7353
number of multiplications 924 440 275 120 13751 * 767 320
number of restarts 14 10 3 2 162 * 12 7
CPU time (sec.) 0.37 0.22 0.17 0.12 8.71 * 1.28 0.67

Table 5

Test problems from TOLOSA extracted from fluid-structure coupling (flutter problem). Size of the
basis, degree of the polynomial, and block size are 20, 20, 1, respectively.

order of matrix 2000 4000 6000 8000 10000
number of entries 5184 8784 12384 15984 19584
number of multiplications 589 240 393 180 236 140 393 380 236 80
number of restarts 7 4 5 3 3 2 5 7 3 1
CPU time (sec.) 0.83 0.43 1.24 0.70 1.23 0.85 2.57 2.81 2.14 0.97

Table 6

Evaluation by Lehoucq and Scott. CPU times (in seconds) by IBM RS/6000 3BT and matrix-vector
products for computing the right-most eigenvalues of WEST2021 from CHEMWEST (* denotes convergence
not reached within 2000m matrix-vector products). We denote by r the block size and by m the subspace
dimension.

Algorithm r=1,m=8 r=5,m=20
EB12 * 98/20930
ARNCHEB 8.6/3233 71/15921
EB13 17/4860 18/4149
ARPACK 3.7/401 2.1/167

Table 7

CPU times (in seconds) and matrix-vector products for computing the right-most eigenvalues of
PORES2, matrix of order 1224 with 9613 entries, which was extracted from reservoir simulation.

Algorithm r=1,m=12 r=4,m=20
EB12 0.6/423 9.1/2890
ARNCHEB 3.4/1401 4.7/1712
EB13 0.4/119 1.3/305
ARPACK 0.5/90 1.3/151



Fig. 1. Spectral Portraits of WEST0655 and WEST0989 from CHEMWEST.

Fig. 2. Spectral Portraits of WEST2021 and PORES2



that the QR method is the most significant bottleneck on these MIMD architectures. The
speed of convergence for such methods usually increases which the subspace size m is cho-

sen larger. The number of floating-point operations, and therefore the time required by the
algorithm, rapidly increases with subspace dimension m. Furthermore, m must be taken

as small as possible to avoid QR to become a bottleneck.
Henry and van de Geijn [8] show that under certain conditions the described approach

is asymptotically 100% efficient. It is impossible to find an implementation with better
scalability properties, since for maintaining a given level of efficiency the dimension of the

matrix must grow linearly with the number of processors. Therefore, it will be impossible
to maintain the performance as processors are added, since memory requirements grow

with the square of the dimension, and physical memory grows only with the number of
processors. They also show that for the standard implementation of the sequential QR

algorithm, it is impossible to find an implementation with better scalability properties.

6. Conclusion. We simplified the computation of the least-squares polynomial which

minimizes its norm on the boundary of the convex hull enclosing unwanted eigenvalues,
using the minimum property of the orthogonal polynomials. This method requires the

computation of 2rm nz+2mr(mr+2r+1)n flops for the block Arnoldi method, r3[10m3 +
O(m2)] for the computation of the eigenvalues of Hm, and 2kr nz+O(n) for the Chebyshev

iteration. The number of floating point operations rapidly increases with the size of the
subspace dimension m and it indicates that we need to take m as small as possible if we

want to avoid QR to become a bottleneck, even on parallel architectures. Although some
problems are to be solved, the validity of our method was confirmed by the experiments

using the Harwell-Boeing Sparse Matrix Collection, which is a set of standard test matrices
for sparse matrix problems. A more detailed analysis of the precision and the complexity

of the methods is required.
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