Intl. Conf. on Parallel Processing & Applied Mathematics (PPAM 2007)
September 9-12, Gdarisk, Poland

Cloth Simulation in the SILC Matrix
Computation Framework: A Case Study

Tamito KAJIYAMA (JST / University of Tokyo, Japan)
Akira NUKADA (JST / University of Tokyo, Japan)
Reiji SUDA (University of Tokyo / JST, Japan)
Hidehiko HASEGAWA (University of Tsukuba, Japan)
Akira NISHIDA (University of Tokyo / JST, Japan)

Outline

The SILC matrix computation framework

— Easy-to-use interface for matrix computation
libraries

— Proposed application styles for numerical
simulations in SILC

Case study: Cloth simulation in SILC
Experimental results
Concluding remarks

Overview of the SILC framework

» Simple Interface for Library Collections
— Independent of libraries, environments & languages
— Easy to use

* Three steps to use libraries
— Depositing data (matrices, vectors, etc.) to a server

— Making requests for computation by means of
mathematical expressions

— Fetching the results of computation if necessary

Depositing data

User program "x=A\b"
" —_—
(client) SILC server
-
-
Fetching results Matrix computation libraries
[

Example: Using SILC in C

Solve the initial value
problem of 2D diffusion
/* create matrices 4, C and vector u, */ equation below using the

SILC_PUT("A", &A); Crank-Nicolson method:

SILC_PUT('C", &C); %:L+7 wye©,
SILC_PUT("U", &U); /*uy*/ o)f‘,)z(f’ o

for (k = 1; k <= n_steps; k++) | ifx, ye(04,06)
{ U .00 = {0 otherwise
SILC_EXEC("b = C * u");
SILC_EXEC(“u = A \\ b"); (.. 0.004)
SILC_GET(&u, "u"); /*u,*/

silc_envelope_t A, C, u;

/* output solution u, at time 7, */

Main characteristics of SILC

+ Independence from programming languages
— User programs for SILC in your favorite languages
* Independence from libraries and environments

— Using alternative libraries and environments requires
no modification in user programs

— Flexible combinations of client & server environments

User program (client) SILC server
Sequential Sequential
Sequential Shared-memory parallel (OpenMP)
Sequential Distributed parallel (MPI)

Distributed parallel (MPI)

Distributed parallel (MPI)

Proposed application styles

* Limited application style
— Use SILC only in the most time-consuming,
computationally intensive part of a program
+ Comprehensive application style

— Move all relevant data to a SILC server, and
implement overall simulations using SILC's
mathematical expressions

Abbreviations:
» LTD for the limited application style
» CMP for the comprehensive application style

Comparison of LTD & CMP styles

LTD style CMP style

« Less data transfer

* More parallelizable
computations

Pros |« Easy to apply

* May require a major
rewrite of programs

Cons | * Frequent data
transfer to/from the
SILC server

Purposes of the present research

* To verify the feasibility of numerical
simulations in SILC

* To examine the pros and cons of the two
application styles

A case study: Cloth simulation

+ Time-dependent simulation of cloth motion
— Mass-spring model T
— The implicit Euler method
— Solving a sparse linear
system is necessary for
each time step
+ Original code
— Sequential program in C
— The CG method in the Lis
iterative solvers library

Frame No. 128

— Visualization via OpenGL

The original code

Do some initialization (defining cloth geometry, etc.)

For each time step:

1. Calculate force fand its derivatives df/ox and
of / ov (Jacobian matrices).

2. Solve a linear system 44v = b, where

A= {M—AtZg—At%}
ox ov

b= {fo +Ata—fv0}At
ox

3. Update particle motion.

v=v,+Av

X=Xx,+Atv

New code in the LTD style

Original code using Lis* New code using SILC

iLIS_MATRIX A; LIS_VECTOR b, dv;

isﬂc_enve1ope_t A, b, dv;

for (k = 1; k <= n_steps; k++)
{
/* 1. Calculate f, of / ox and of / ov */

/*2.Solve Adv=5b */

for (k = 1; k <= n_steps; k++)
{
/* 1. Calculate f, of/ éx and of / ov */

/*2.Solve Adv="5b */

Tis_solve(A, b, dv, /% Av#/
1is_params,
Tlis_options,
Tis_status);

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("dv = A \\ b");
SILC_GET(&dv, "dv'); /* Av*/

/* 3. Update particle motion */

}

/* 3. Update particle motion */

}

* An iterative solvers library written in C.

Force and its derivatives

* Force
f=2(f,+d)
jer
X -
fi=b (Jx, —x,‘—lk)"7 (spring force)
X; - X,
d;=-h(v,-v,) (damping)
+ Derivatives (Jacobian matrices)
o o o A
0x, 0x, ov, ov,
(’)i_ : . : (’)i_
ox ' ’ T o
0x, 0x, ov, ov,

Elements of the derivatives

Off-diagonal blocks (3x3 submatrices)

0] bl X, —x;)(x; —x, r %)
L/ S T DT U R R
8x/ ‘x; —X; ‘x/ =X 61v/

Diagonal blocks (3x3 submatrices)

Y_y| U ¥ _v| Y
SpE) deal)

Computing these blocks one after another is not
a good idea in SILC (too fine-grain to parallelize)

@‘ For each spring & connecting particles i and ; :
CitlP sgite n : number of particles, s : number of springs

Exploiting data parallelism

Pik=Xi —X;
2z = sqrt(dot(py, pr))

e

Y, > : linear maps from R* to R*
X : another linear map from R* to R’

p=(Y1-T)x
2=sqrt(X (p *@ p))
*@ : elementwise multiplication operator in SILC

All coarse-grain, parallelizable matrix computations

silc_envelope_t v, x; ‘

/¥
SILC_EXEC("p = Y * x");

SILC_EXEC("z = sqrt(X_T * (p *@ p))");
SILC_EXEC("fij = p *@ (X * (K_stiff *@ (z - L)
SILC_EXEC("dij = (Y * v) *@ (X * K_damp)");
SILC_EXEC("f = Mg - Y_T * (fij + dij)");

SILC_EXEC("zhat = ones(s, 1) /@ z");
SILC_EXEC("pzhat = p *@ (X * zhat)");
SILC_EXEC("U_L = sparse(U_L_row, U_col, pzhat, 3*n, s)");
SILC_EXEC("U_R =

SILC_EXEC("tmp =
SILC_EXEC("A2 = Y.
SILC_EXEC("A3 = (
SILC_EXEC("DfDx = T1 - T2 + T3");
Ve
SILC_EXEC("A = M + (dt * dt) * pfbx + dt * pfbv");
SILC_EXEC("b = dt * (f - dt * (DfDx * v))");
SILC_EXEC("dv = A \\ b");

/¥
SILC_EXEC("V += dv *@ fixed");
SILC_EXEC("x += dt * v");
SILC_GET(&v, "v");

New code in the CMP
style: All expressions are
coarse-grain matrix
computations to be
efficiently parallelized by
a parallel SILC server.

1. Calculate f, of /éx and of /ov */

se(U_R_row, U_col, pzhat, 3*n, s)");
sqrt(zhat *@ K_stiff *@ L)");

T * diag(X * tmp); T2 = A2 * A2'");
U_L - U_R) * diag(tmp); T3 = A3 * A3'");

2. Solve AAv="»b */

3. Update particle motion */ Solving A4v = b is done in the

same way as the LTD style.

SILC_GET(&, "x");

Experimental results

104 particles (7.998 x 108 springs), 20 time steps
3 user programs on the same PC

A SILC server on the same PC

Another server on SGI Altix 3700 in a GbE LAN

User program Original LTD version CMP version
PC Altix Altix

Sl saer - (sequential) (16 threads) (32 threads)
Execution time [sec] 11.80 15.28 8.33 29.87

Speedup — x1.29 slower x1.42 faster x2.53 slower

PC: Intel Pentium 4 3.40 GHz, 1 GB RAM, Microsoft Windows XP SP2
SGlI Altix 3700: Intel Itanium 2 1.3 GHz x 32, 32 GB RAM (cc-NUMA), Red Hat Linux AS 2.1

Performance of the LTD version

[Ciient-side computation 0 Data transfer O Server-side computation |

1.00

Time [sec]

Local Remote Remote Remote Remote Remote Remote
1 thread 2 threads 4 threads 8threads 16threads 32 threads

v Amount of data transfer per time step: 17.7 MB

Performance of the CMP version

[Data transfer O Server-side computation |

@
3
3

450
400 —
350 || 1.00
=300 —
&
250 —
g 1.66
F 200 —f
150] 304
100] 5.60
50 [[S— ﬂM
0 1 ™1
Local Remote Remote Remote Remote Remote Remote

1 thread 2threads 4threads 8threads 16threads 32 threads

v Amount of data transfer per time step: 0.458 MB (2.59%)

Performance of the CMP version
(cont'd)

« The CMP version is slow because there are lots of non-
floating point operations in sparse matrix computations
in the Compressed Row

Storage (CRS) format Sparse matrix-matrix products ~ 53.57 %

* In fact, the FLOP count is Sparse matrix transpositions 20.04 %

about 20% fewer than the

Calls for the "sparse" function 11.48 %

original and LTD versions
Sparse matrix-matrix additions 713 %

Calls for the linear solver (CG) 4.59 %

Others 3.19 %

Breakdown of the server-side
computation (32 threads)

Non-zero blocks in the derivatives

S
AN
NN
NnENRN
NnEAN
NN
N\ N\
NAERN

AN

7
P 4

/
7,
7

o i
ox ov

v Use of a block matrix storage format may accelerate
the CMP version

Summary

+ A feasibility study of numerical simulations in
SILC

— LTD and CMP versions of an existing cloth simulation
code were developed

— Pros and cons of the application styles were verified
» Future work
— Performance improvements of the CMP version by
means of a block matrix storage format
— Further case studies with other types of numerical
simulations such as CFD

Advertisement

* A short demo of SILC and copies of our
papers are available

» SILC v1.2 is freely available at

http://ssi.is.s.u-tokyo.ac.jp/silc/

— Source (Unix/Linux, Windows, Mac OS X)
— Precompiled binary package for Windows
— Documentation, sample programs

