
SILC: Simple Interface for Library
Collections

Introduction
This package contains the source code of Simple Interface for Library Collections (SILC), sample
programs, and documentations.

SILC is a framework that allows you to use various matrix computation libraries independently of
particular computing environments and programming languages.

If you write user programs in the traditional programming style based on direct calls of library
functions, the user programs depend on particular libraries in use. This dependency requires you
to make a considerable amount of modification to the user programs when you want to use
different libraries, possibly in other computing environments.

User programs in the SILC framework, on the other hand, utilize libraries by depositing data
(such as matrices and vectors) to a SILC server together with user-defined names for later
reference, and making requests for computation by means of textual mathematical expressions.
The mathematical expressions are translated into calls of appropriate library functions, which are
carried out in the server's memory space independently of the user programs. When the results
of computation are needed, the user programs retrieve them by specifying the names of data to
be fetched.

By using SILC, you can easily make use of alternative libraries and computing environments
without modification in user programs. In addition, user programs for SILC can be written in
various programming languages because of the use of mathematical expressions to represent
requests for computation.

Please refer to the following documents for the concepts, design, and implementation of SILC.

T. Kajiyama, A. Nukada, H. Hasegawa, R. Suda, and A. Nishida. SILC: a Flexible and
Environment Independent Interface to Matrix Computation Libraries. In Proceedings of the
6th International Conference on Parallel Processing and Applied Mathematics (PPAM
2005), LNCS 3911, pp.928-935, 2006.

http://www.ssisc.org/ppam2005/paper.pdf

T. Kajiyama, A. Nukada, H. Hasegawa, R. Suda, and A. Nishida. LAPACK in SILC: Use of
a Flexible Application Framework for Matrix Computation Libraries. In Proceedings of the
8th International Conference on High Performance Computing in Asia Pacific Region (HPC
Asia 2005), November 2005.

http://www.ssisc.org/HPCAsia2005/Kajiyama_paper.pdf

Getting started with SILC
SILC runs in Unix-like environments and Microsoft Windows. In a Unix-like environment, you
need to compile the source code of SILC to obtain executable files. For Windows, a precompiled

Version: 1.3 (October 31, 2007)

1

binary package of ready-made executable files is available. See README.win32.en for more
information on the binary package for Windows.

The following pieces of software are required to compile the source code of SILC in Unix-like and
Microsoft Windows environments:

C and Fortran compilers
GNU Make
GNU Bison
GNU Flex

You are able to use the following matrix computation libraries by building them into SILC.

BLAS and LAPACK (http://www.netlib.org/)
Lis 1.0.2 (http://www.ssisc.org/lis/)
FFTSS (http://www.ssisc.org/fftss/)

You can obtain the source code of SILC (in a compressed archive file named silc-1.3.tar.gz)
from the following location:

http://www.ssisc.org/silc/

The contents of the compressed archive file can be extracted as follows:

gzip -cd silc-1.3.tar.gz | tar xvf -

The source code of SILC is stored in the silc-1.3/src/ directory in the current working
directory. Move to silc-1.3/src/ as follows:

cd silc-1.3/src

Next, you need to create a file named make.inc. This file defines environment-specific compiler
options, locations of library files, and so on. There are example files for several computing
environments in the inc/ directory.

If you have a GNU/Linux system, you can use inc/make.gcc to compile SILC with GCC. Create
the make.inc file as follows:

cp inc/make.gcc make.inc

On Microsoft Windows, you can use GCC and GNU Make in MinGW (http://www.mingw.org/)
and GNU Bison and GNU Flex in GnuWin32 (http://gnuwin32.sourceforge.net/) to compile SILC.
The following installer packages are used to test the current version of SILC:

http://downloads.sourceforge.net/mingw/MSYS-1.0.10.exe
http://downloads.sourceforge.net/mingw/MinGW-3.1.0-1.exe
http://downloads.sourceforge.net/gnuwin32/bison-2.1.exe
http://downloads.sourceforge.net/gnuwin32/flex-2.5.4a-1.exe

After installing these packages, create the make.inc file from inc/make.mingw as follows:

cp inc/make.mingw make.inc

For other computing environments, you need to create a make.inc file of your own. Please take a
look at Section 2.1, "Compiling a SILC server", in SILC User's Manual for more information.

After you have created the make.inc file, run the make command to compile SILC:

2

make

Before you run sample programs, you need to start a SILC server as follows (NB: the following
examples are for Unix/Linux environments; on Windows, please replace / [slash] with \
[backslash]):

cd src/server
./server

Then start a sample program (for example, src/client/demo3.c) as follows:

cd src/client
./demo3

This program solves a system of linear equations Ax = b, where A is a tridiagonal matrix. If you
get an output message like ||b-Ax|| = 3.784025e-12, the program works fine (the decimal value in
the output message may vary according to the computing environment in use).

Moreover, you can use the console program (src/client/console.c) to interactively carry out
computation by mathematical expressions:

./console

The following example shows how to compute matrix-vector products A * b and b' * A using
the console program, where A is a 2-by-2 matrix, b is a 2-vector, and the single quote ' means
transposition:

> A = {1, 2; 3, 4}
> b = {5, 6}
> x = A * b
> pprint x
column vector, 2 elements of int
 [1] = 23
 [2] = 34
> x = b' * A
> pprint x
row vector, 2 elements of int
 [1] = 17
 [2] = 39
>

Letters after > of each line are user's input. Type Ctrl-D (in Unix-like environments, or Ctrl-Z on
Windows) to exit. For more information, take a look at the README.console.en file.

Creating user programs for SILC
Please consult SILC User's Manual for the development of application programs (referred to as
user programs) for SILC. The manual deals with user programs written in C and Fortran. The
development of user programs for SILC on Microsoft Windows is also covered in the
README.win32.en file.

You can also write user programs for SILC in object-oriented scripting language Python
(http://www.python.org/). At the moment, however, there is no document about the development
of user programs in Python. It is worth noting that there is a good correspondence between user
programs in Python and those in C. You can find sample programs in Python in the
src/client/python/ directory.

3

Sample programs
There is a number of sample programs for SILC in the src/client/ directory. Some programs
are described as follows.

demo3_ssi_cg.c

demo3.c

fortran/fdemo3.f

These programs solve a system of linear equations Ax = b, where A is a tridiagonal matrix.
In demo3_ssi_cg.c, library function ssi_cg() is directly called (i.e., without SILC) to solve
the linear system with the Conjugate Gradient (CG) method; in demo3.c and
fortran/fdemo3.f, the linear system is solved by means of SILC. In addition, a Python
version of demo3.c can be found in python/demo3.py.

silc_cg.c

This program implements the CG method by means of mathematical expressions of SILC.
The same system of linear equations as demo3.c is used as a problem to be solved.

mm_crs.c

mm_band.c

These programs read a matrix from a file in the Matrix Market format (see
http://math.nist.gov/MatrixMarket/) and solve systems of linear equations via SILC. In
mm_crs.c, the matrix is transferred to a SILC server in the Compressed Row Storage (CRS)
format, and the systems of linear equations are solved with an iterative solver (such as the
CG method). In mm_band.c, the matrix is sent in LAPACK's banded storage format, and the
linear systems are solved with LU decomposition. You can change matrix storage formats
through a command-line option.

console.c

This program reads mathematical expressions from the standard input and sends them to
a SILC server. That is, you can interactively use the server like a desktop calculator. Type
"pprint <name>" to see the results of computation. For more information, take a look at the
README.console.en file.

Open issues
The software is still under active development, so that some features are not fully implemented.
Major features not implemented yet are as follows:

Restricted assignment to sparse matrices in the CRS format (namely, assignment
statements with subscript in the left-hand side).
Elementwise multiplication and division.
Cubic arrays.

4

Regression tests
There is a set of regression tests for validating the features of SILC. These tests are user
programs for SILC themselves, and are written in Python. You need Python 2.4 or later to run
the programs. To carry out the regression tests, simply run one program after another as follows:

cd src/client/python
python test_dense.py
python test_sparse_crs.py
python test_leq.py
python test_augmented.py
python test_subscript.py
python test_concat.py
python test_put_matrix.py
python test_matrix_format.py

Request for citation
We would like to ask you to cite the following documents in the papers you write with regard to
the results of research using SILC.

Hidehiko HASEGAWA, Reiji SUDA, Akira NUKADA, Tamito KAJIYAMA, Kengo
NAKAJIMA, Daisuke TAKAHASHI, Hisashi KOTAKEMORI, Akihiro FUJII, Akira NISHIDA.
Computing environment independent interface for matrix computation library. In IPSJ SIG
Notes, 2004-HPC-100, pp.37-42, 2004.
Akira NISHIDA. SSI: Overview of simulation software infrastructure for large scale scientific
applications. In IPSJ SIG Notes, 2004-HPC-098, pp.25-30, 2004.

We would also appreciate if you send us any kind of results (papers, application programs, etc.)
that you have using this software. Our postal and e-mail addresses are as follows:

Akira Nishida
Graduate School of Information Science and Technology,
The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
E-mail: devel at ssisc.org

Copyright and license
The copyright holder of this software is the SSI Project. This software is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY. See the LICENSE file for the precise terms
and conditions for the use of this software.

This software contains the following pieces of software by other people and projects. Please use
them according to the license terms and conditions specified by their copyright holders.

src/server/dgefa.f, src/server/dgesl.f

LINPACK from the Netlib (http://www.netlib.org/).

src/lib/mt/mt19937ar.c, src/lib/mt/mt19937ar.h

These files are part of Mersenne Twister, which is freely available at the following location:

5

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Contact
We appreciate your comments, bug reports, feature requests, and so on. Please feel free to use
the following address to write us:

The SSI Project <devel at ssisc.org>

What's new?
Version 1.3 (October 31, 2007)

src/client/console.c: An extended version of SILC's command language was
implemented. See README.console.en for the details of language extensions.
The following built-in functions were added.

coremodule: sqrt(v) for computing the square root of each element in a vector.
sparse_crs: sparse(i, j, v, m, n) for generating a sparse matrix.
sparse_crs: diag(v) and diag(v, k) for generating diagonal matrices.
sparse_crs: diagvec(m) for retrieving diagonal elements of a matrix.

The following modules were added.
leq_smsamg: an (experimental) arithmetic module for Super Matrix Solver AMG
version 3 (VINAS Co., Ltd.)
leq_mp: an (experimental) arithmetic module for mp_crs, a small library of GNU
MP-based multiple-precision iterative solvers.

New constant "inf" for expressing the double precision infinity was added.
An experimental implementation of the COCG method was added to the leq_lis
module.
Elementwise multiplication and division of vectors and sparse matrices in the CRS
format were implemented.
A bug of function norm2 in coremodule with regard to complex vectors was fixed.
A bug in transposes of rectangular matrices in the CRS format was fixed.
Bugs in matrix addition and subtraction in the CRS format were fixed.
The handling of modifiers (i.e., negation, transposition, complex conjugate, and
subscript) was fixed so that modifiers attached to arguments of functions and
procedures are correctly handled.
A race condition in the handlers of PUT and EXEC requests in a multithreading
server was removed. This race condition could result in unexpected alterations of
deposited data when PUT and EXEC requests were alternately issued.
src/client/mm_crs.c: A bug in computing a residual norm was fixed.
Lots of minor bug fixes and improvements were made.

Version 1.2 (November 12, 2006)
The following modules were added.

leq_lis: an arithmetic module for the Lis iterative solvers library (see
http://www.ssisc.org/lis/).
fftss: another arithmetic module for the FFTSS fast Fourier Transform library
(see http://www.ssisc.org/fftss/).
sparse_jds: an (experimental) storage format module for the Jagged Diagonal
Storage (JDS) format.

The performance of data communications in PUT/GET requests was improved.
The maximum string length of EXEC requests was increased to 4096.
The SILC_EXEC routine now returns an error code when syntax errors are found in
EXEC requests.
Bugs in matrix subtraction, matrix-vector product, and matrix product for sparse
matrices in the CRS format were fixed.
The performance of the transpose operation in the CRS format was improved.

6

Several built-in functions and procedures were added, including:
split: a version for sparse matrices in the CRS format (in addition to the existing
one for dense matrices).
ones: generates a dense matrix whose elements are 1.
srand, rand: for initializing the Mersenne Twister random number generator and
for generating a dense matrix consisting of random numbers.
svd: computes the singular value decomposition (SVD) using LAPACK.

Notations for specifying precisions of scalar literals were introduced. In addition, the
precision of the constant "i" for representing the imaginary unit was changed from
double precision to single precision.
Makefile.mingw for Microsoft Windows (MinGW) was added.
Lots of minor bugs were also fixed.

Version 1.1 (November 25, 2005)
English translations of README (this file) and "SILC User's
Manual" (doc/users_en.txt) were added.
Now SILC supports computing environments that do not have the feature of dynamic
loading of shared object files (such as NEC SX-6i).
Makefile.sx for NEC SX-6i was added.
Some minor bugs were fixed.

Version 1.0 (September 20, 2005)
The first public release.

$Id: README.en,v 1.16 2007/10/31 05:18:48 kajiyama Exp $

7

SILC Binary Package for Win32

Introduction
This file describes how to use a binary package of SILC precompiled for Win32 environments. A
binary package is distributed in the form of a zipped archive having a file name like silc-1.3-
mingw32.zip. The package contains a set of executable files, including both a SILC server and
sample user programs for SILC. The package has been tested on Windows XP SP2. If you have
a Windows machine and you want to try out SILC by playing with some sample user programs,
the binary package will meet your needs.

Quick start
1. Extract all files in the binary package into a directory. In this document, it is assumed that

the extracted files exist in the C:\silc-1.3\ directory.

2. Open a command prompt (e.g., by selecting the Start menu >> All Programs >>
Accessories >> Command Prompt) and change the current directory to the C:\silc-1.3
\src\server\ directory as follows:

> C:
> cd \silc-1.3\src\server

Start a SILC server by running server.exe as follows:

> server

The server runs in the foreground, printing some debugging information as illustrated
below:

single thread
load_modules("./modules/formats")
silc_register_format("SILC:dense (column major)")
silc_register_module("dense")
silc_register_format("SILC:Band")
silc_register_module("sparse_band")
silc_register_format("SILC:CRS")
silc_register_module("sparse_crs")
silc_register_format("SILC:JDS")
silc_register_module("sparse_jds")
load_modules("./modules")
silc_register_module("blasmodule")
silc_register_module("coremodule")
silc_register_module("leq_cg")
silc_register_module("leq_gs")
silc_register_module("leq_lis")
silc_register_module("leq_lu")
silc_register_module("linpackmodule")

3. Open another command prompt and change the current directory to C:\silc-1.3
\src\client\. This directory contains executable files of sample user programs for SILC:

Version: 1.3 (October 31, 2007)

8

> C:
> cd \silc-1.3\src\client

Run a user program (demo3.exe for instance) in the new command prompt as follows:

> demo3

This program establishes a connection to the SILC server that is running in the other
command prompt, and solves a system of linear equations Ax = b by means of an
appropriate linear solver that the server makes available. The program prints some
debugging information and terminates after displaying its execution time (in seconds) and
the solution's residual norm ||b-Ax|| as illustrated below:

0.063935s
||b-Ax|| = 3.839510e-015

The actual numbers may vary; if you get similar results, the program works fine.

4. You can also use the console program (console.exe) in the same directory to interactively
carry out matrix computations by means of SILC's mathematical expressions:

> console

The following example shows how to compute matrix-vector products A * b and b' * A
using the console program, where A is a 2-by-2 matrix, b is a 2-vector, and the single quote
' means transposition:

> A = {1, 2; 3, 4}
> b = {5, 6}
> x = A * b
> pprint x
column vector, 2 elements of int
 [1] = 23
 [2] = 34
> x = b' * A
> pprint x
row vector, 2 elements of int
 [1] = 17
 [2] = 39
>

Letters after > of each line are user's input. Type Ctrl-Z to exit. For more information, take a
look at the README.console.en file.

Note: If you get some error message with regard to .dll files, try setting the PATH environment
variable as follows:

> set PATH=C:\silc-1.3\src\server;%PATH%

Creating user programs for SILC
SILC User's Manual describes how to develop application programs (referred to as user
programs) for SILC. The manual deals with user programs written in C and Fortran.

You can also write user programs for SILC in object-oriented scripting language Python
(http://www.python.org/). At the moment, however, there is no document about the development

9

of user programs in Python. It is worth noting that there is a good correspondence between user
programs in Python and those in C. You can find sample programs in Python in the
src\client\python\ directory.

What you need to do to create a user program in C and Fortran is summarized as follows:

1. Include a header file for SILC in the beginning of the user program: src\client\client.h is
the header file for C, and src\client\fortran\client.h is the one for Fortran.

2. Link either src\client\client.c or src\client\libsilc.a to the user program, together
with the WinSock2 library.

The rest of this section describes how to compile a sample program mmul.c, which computes a
square of matrix A (i.e., a matrix-matrix product), by using Microsoft Visual Studio .NET 2003 as
well as MinGW (GCC for Windows). The source code of mmul.c is as follows (please consult
"SILC User's Manual" for the details of functions and constants in the code):

#include <stdio.h>

#include "client.h"

int main(int argc, char *argv[])
{
 silc_envelope_t object;
 double A[4] = {1.0, 2.0, 3.0, 4.0};
 double X[4];

 SILC_INIT();

 object.v = A;
 object.type = SILC_MATRIX_TYPE;
 object.format = SILC_FORMAT_DENSE;
 object.precision = SILC_DOUBLE;
 object.m = object.n = 2;
 SILC_PUT("A", &object);

 SILC_EXEC("X = A * A");

 object.v = X;
 SILC_GET(&object, "X");

 SILC_FINALIZE();

 printf("A =\n");
 printf(" %e %e\n", A[0], A[2]);
 printf(" %e %e\n", A[1], A[3]);
 printf("A * A =\n");
 printf(" %e %e\n", X[0], X[2]);
 printf(" %e %e\n", X[1], X[3]);
}

Using Microsoft Visual Studio .NET 2003

The main points of the instructions to be presented are as follows:

Add the following header file and C file to the project that you will be creating:
src\client\client.h
src\client\client.c

Change configuration properties of the project as described below:
Configuration Properties >> Linker >> Input: Add the WinSock2 library
ws2_32.lib to Additional Dependencies.
Configuration Properties >> C/C++ >> Precompiled Headers: Select Not Using
Precompiled Headers from the choices in Create/Use Precompiled Header.

Detailed instructions are as follows:

1. Start Microsoft Visual Studio .NET 2003 and create a new project by selecting Visual

10

C++ Projects >> Win32 Console Project. Enter the project's name (mmul for example)
in the Name entry.

Figure 1: Creating a new project.

2. The following files are automatically created when you create the new project. These
files are unnecessary in this tutorial, so delete them as well as their folders.

Source Files\mmul.cpp
Source Files\stdafx.cpp
Header Files\stdafx.h
ReadMe.txt

Note that only references to the files are deleted in this step. The actual files can be
deleted in the next step.

11

Figure 2: Removing unnecessary files.

3. Move or copy the following files to the Visual Studio Project\mmul\ directory in My
Documents:

mmul.c
src\client\client.c
src\client\client.h

Also delete the four files listed in Step 2 at this point of time.

Figure 3: Adding and removing files.

4. Add the three files listed in Step 3 by selecting Project >> Add Existing Item.

Figure 4: Adding existing items.

12

5. Select Project >> Properties (or press the highlighted button in Figure 5) and change
properties as described below:

Configuration Properties >> Linker >> Input: Add the WinSock2 library
ws2_32.lib to Additional Dependencies.
Configuration Properties >> C/C++ >> Precompiled Headers: Select Not Using
Precompiled Headers from the choices in Create/Use Precompiled Header.

Figure 5: Changing properties of the project.

6. Compile and link the program by selecting Build >> Build Solution. If compilation and
linking have succeeded, executable file mmul.exe is created in the Visual Studio
Projects\mmul\Debug\ directory in My Documents.

Figure 6: Building the user program.

7. Open a command prompt by selecting the Start menu >> All Programs >>

13

Accessories >> Command Prompt and start a SILC server as follows:

> C:
> cd \silc-1.3\src\server
> server

Open another command prompt and run the user program as follows:

> C:
> cd "My Documents\Visual Studio Projects\mmul\Debug"
> mmul
connected to kajiyama on port 1639
number of formats = 4
 0: "SILC:dense (column major)"
 1: "SILC:Band"
 2: "SILC:CRS"
 3: "SILC:JDS"
Request: >A
Response: 200 OK
Request: :9:X = A * A
Response: 200 OK
Request: <X
Response: 200 OK
A =
 1.000000e+000 3.000000e+000
 2.000000e+000 4.000000e+000
A * A =
 7.000000e+000 1.500000e+001
 1.000000e+001 2.200000e+001
>

If you get similar results to the above, the program works fine.

Figure 7: Running a SILC server and the user program.

Using MinGW (GCC 3.2.3)

MinGW (http://www.mingw.org/) is a Windows version of GCC. You can obtain a complete
installation of GCC 3.2.3 by downloading and running the following installers in this order:

http://downloads.sourceforge.net/mingw/MSYS-1.0.10.exe

14

http://downloads.sourceforge.net/mingw/MinGW-3.1.0-1.exe

Instructions on how to compile mmul.c using MinGW are shown below:

1. Open a command prompt by selecting the Start menu >> All Programs >>
Accessories >> Command Prompt and change the current working directory to the
directory where mmul.c exists.

2. Run the gcc command to compile mmul.c as follows:

> gcc -IC:/silc-1.3/src/client -c mmul.c
> gcc -LC:/silc-1.3/src/client -o mmul mmul.o -lsilc -lws2_32

The -I and -L options specify the directories where client.h and libsilc.a exist.
The -lws2_32 option is needed to link the WinSock2 library to the user program.

If you want to modify the user program and compile it repeatedly, it is worth creating
Makefile shown below:

all: mmul

SILC= C:/silc-1.3

CC= gcc
CFLAGS= -I$(SILC)/src/client
LDFLAGS= -L$(SILC)/src/client
LIBS= -lws2_32

mmul: mmul.c
 $(CC) $(CFLAGS) -c mmul.c
 $(CC) $(LDFLAGS) -o $@ mmul.o -lsilc $(LIBS)

With the above file placed in the same directory as mmul.c, run the make command to
compile the user program as follows:

> make

3. Open another command prompt and run a SILC server:

> C:
> cd \silc-1.3\src\server
> server

Then, run the user program in the first command prompt:

> mmul
connected to kajiyama on port 1639
number of formats = 4
 0: "SILC:dense (column major)"
 1: "SILC:Band"
 2: "SILC:CRS"
 3: "SILC:JDS"
Request: >A
Response: 200 OK
Request: :9:X = A * A
Response: 200 OK
Request: <X
Response: 200 OK
A =
 1.000000e+000 3.000000e+000
 2.000000e+000 4.000000e+000
A * A =
 7.000000e+000 1.500000e+001

15

 1.000000e+001 2.200000e+001
>

If you get similar results to the above, the program works fine.

Copyright and license
The copyright holder of this software is the SSI Project. This software is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY. See the LICENSE file for the precise terms
and conditions for the use of this software.

This software contains the following pieces of software by other people and projects. Please use
them according to the license terms and conditions specified by their copyright holders.

src\server\libblas.dll, src\server\liblapack.dll

BLAS and LAPACK from the Netlib (http://www.netlib.org/).

src\server\dgefa.f, src\server\dgesl.f

LINPACK from the Netlib (http://www.netlib.org/).

src\lib\mt\mt19937ar.c, src\lib\mt\mt19937ar.h

These files are part of Mersenne Twister, which is freely available at the following location:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Contact
We appreciate your comments, bug reports, feature requests, and so on. Please feel free to use
the following address to write us:

The SSI Project <devel at ssisc.org>

$Id: README.win32.en,v 1.11 2007/10/31 05:18:48 kajiyama Exp $

16

Command language extensions in the
console program

Introduction
This document describes the extensions of SILC's command language in the console program
(src/client/console.c). The console program allows you to (1) interactively execute
mathematical expressions and (2) execute a sequence of mathematical expressions stored in a
file. The program has made several language extensions to the command language so that
conditional branching and loops can be written. Using this program you can write user programs
without compilers of other programming languages such as C and Fortran.

Conditional branching
Conditional branching is written in the following form:

if (cond_expr) {
 stmt; ...
} else if (cond_expr) {
 stmt; ...
} else {
 stmt; ...
}

where cond_expr is a conditional expression (described below) and stmt is a statement. Else
clauses may be omitted. Braces cannot be omitted.

Loops, continue and break statements
Loops are written in the following form:

while (cond_expr) {
 stmt; ...
}

where cond_expr is a conditional expression (described below) and stmt is a statement. Braces
cannot be omitted. Within loops you can use continue and break statements.

Conditional expressions
Conditional expressions (cond_expr) are composed of the following comparison operators.

Last modified: October 31, 2007

17

expr < expr
expr > expr
expr <= expr
expr >= expr
expr == expr
expr != expr

where expr is a mathematical expression in SILC's command language. The value of the
expression must be a scalar value. Values of other data types (such as vectors and matrices)
result in a runtime error. In addition, conditional expressions can be combined with the following
boolean operators and parentheses.

cond_expr or cond_expr
cond_expr and cond_expr
not cond_expr
(cond_expr)

These comparison and boolean operators yield boolean values. Any expressions that do not
have boolean values cannot be used as conditional expressions. Moreover, true and false can
be used as boolean constants.

Conditional expressions are handled in the console program as follows:

1. Execute an assignment statement for each of the two expressions specified as the left- and
right-hand sides of a comparison operator, and store the value of the expression to a
temporary variable _ as follows:

SILC_EXEC("_ = expr")

2. Fetch the value of the temporary variable from the SILC server:

SILC_GET(&tmp, "_")

3. Compare the values of the two expressions (fetched one after another) on the client side.

Extended system statements
In addition to the system statements defined in SILC's command language, the following
extended system statements can be used.

load "filename", variable

Read data (such as matrices and vectors) from a specified file in the Matrix Market format,
and deposit the data to the SILC server with a specified variable name. Examples:

load "filename.mtx", A
load "filename.mtx", b

save "filename", variable

Fetch the data of a specified variable name from the server, and store the data into a file in
the Matrix Market format. Example:

save "filename.mtx", x

18

pprint expr

Fetch the value of a specified mathematical expression expr from the server, and pretty-
print it on the client's standard output.

message "string"

Print a specified string on the client's standard output.

Miscellaneous
Conditional branching, loops, and the extended system statements are carried out on the client
side. Any other statements (namely, ordinary statements in SILC's command language) are
carried out in the SILC server. This implies that all data are maintained by the server (that is, the
console program has no mechanism for data management).

Statements can be concatenated by semicolons. The last semicolon at the end of a line can be
omitted.

Lines can be concatenated by placing \ at the end of a line. For example, the following
statement is treated as written in a single line:

B = {1, 2, 3; \
 4, 5, 6; \
 7, 8, 9}

Any input from # to the end of a line is treated as a comment (simply ignored).

Example
The following is a script that realizes the Conjugate Gradient (CG) method using the
aforementioned extended command language:

create tridiagonal matrix A and vector b
n = 400
A = diag(2.0 * ones(n, 1)) - diag(ones(n-1, 1), 1) - diag(ones(n-1, 1), -1)
b = A * (-ones(n, 1))

solve the linear system Ax=b with the CG method
rho_old = 1.0
p = zeros(n, 1)
x = zeros(n, 1)
r = b
bnrm2 = 1.0 / norm2(b)
iter = 1
while (iter <= n) {
 rho = r' * r
 beta = rho / rho_old
 p = r + beta * p
 q = A * p
 alpha = rho / (p' * q)
 r = r - alpha * q
 nrm2 = norm2(r) * bnrm2
 x = x + alpha * p
 if (nrm2 <= 1.0e-12) {
 break
 }
 rho_old = rho

19

 iter += 1
}

store the solution x into a file
save "sol.mtx", x

print the iteration count
message "number of iterations:"
pprint iter

To run this script, store the script into a file (silc_cg.txt for example), start a SILC server, and
run the console program as follows:

console silc_cg.txt

If everything works fine, the script terminates when the number of iterations reaches 200.

Revision history
October 31, 2007

File names were updated according to the new directory structures in SILC v1.3.
February 13, 2007

Initial version.

$Id: README.console.en,v 1.5 2007/10/31 05:18:48 kajiyama Exp $

20

SILC User's Manual
The SSI Project

Revision: October 31, 2007 (for SILC v1.3)

Table of Contents

1. Introduction
2. SILC server

2.1. Compiling a SILC server
2.2. Running and stopping a SILC server

3. User programs for SILC
3.1. Writing user programs
3.2. Compiling user programs
3.3. Data types and precisions
3.4. Matrix storage formats

4. The command language
4.1. Assignment statements
4.2. Procedure calls
4.3. System statements
4.4. Operands of operators
4.5. Rules for precision conversion
4.6. Subscript
4.7. Modules

5. API reference
5.1. Client routines for C
5.2. Client routines for Fortran
5.3. Built-in functions and procedures

A. Revision history

1. Introduction

This document provides technical details required to create application programs (referred to as user
programs) for SILC. The document first explains how to compile and run a SILC server and how to create
user programs in C and Fortran. Then, the specifications of SILC's mathematical expressions are
described, and finally the details of APIs are summarized.

2. SILC server

2.1. Compiling a SILC server

The following pieces of software are required to compile a SILC server and run it in a Unix-like or
Microsoft Windows environment:

C and Fortran compilers

GNU Make

GNU Bison

21

GNU Flex

You are able to use the following matrix computation libraries by building them into the SILC server.

BLAS, LAPACK (http://www.netlib.org/)

Lis 1.0.2 (http://www.ssisc.org/lis/)

FFTSS (http://www.ssisc.org/fftss/)

SILC has been tested in the following computing environments (in the parentheses, templates of the
make.inc file (described below) for each environment are shown), together with the operating systems
and compilers shown in Table 1. The column "OpenMP" shows whether support for OpenMP is available
in each platform.

Table 1. Tested platforms

You can obtain the source code of SILC (in a compressed archive file named silc-1.3.tar.gz) from the
following location:

http://www.ssisc.org/silc/

The contents of the compressed archive file can be extracted as follows. The source code of SILC is stored
in the silc-1.3/src/ directory in the current working directory.

$ gzip -cd silc-1.3.tar.gz | tar xvf -

To compile the source code of SILC, you need to create a file named make.inc in the silc-1.3/src/
directory. This file defines environment-specific compiler options, locations of library files, and so on.
There are template files for several computing environments in the silc-1.3/src/inc/ directory. See
Table 1 for the names of the template files, target platforms, operating systems, and compilers to be used.

In the make.inc file, you define a series of macros that are referenced from Makefile, the input file of the
make command. The macros are roughly divided into two groups, namely a group of general macros that

Computing environment OS Compilers OpenMP
Sun Fire 3800 (make.sunfire) Solaris 9 (sparc) Sun ONE Studio 7 Yes

SGI Altix 3700 (make.altix) Red Hat Linux Advanced
Server 2.1

Intel C 9.1
Intel Fortran 9.1 Yes

IBM eServer xSeries 335
(make.linux-icc-32) Red Hat Linux 8.0 Intel C 9.0

Intel Fortran 9.0 Yes

Dell PowerEdge SC 1420
(make.linux-icc-64) Fedora Core 4

Intel C 9.0 (EM64T)
Intel Fortran 9.0
(EM64T)

Yes

IBM OpenPower 710
(make.openpower)

SuSE Linux Enterprise Server
9 (ppc)

IBM XL C 7.0
IBM XL Fortran 9.1 Yes

Apple PowerMac G5 (make.g5) Mac OS X 10.4.2 IBM XL C 6.0
IBM XL Fortran 8.1 Yes

NEC SX-6i (make.sx) SUPER-UX 13.1 SX-6
C++/SX 1.0 for SX-6
FORTRAN90/SX 2.0 for
SX-6

No

Panasonic CF-R3 (make.gcc) Fedora Core 3 GCC 3.4.2 No

IBM ThinkPad T42 (make.gcc) KNOPPIX 4.0 LinuxTag
Japanese Edition GCC 3.3.6 No

Dell Dimension 84000
(make.mingw)

Microsoft Windows XP
Professional SP2 MinGW (GCC 3.2.3) No

22

do not depend on SILC (Table 2) and another of SILC-specific macros (Table 3).

Table 2. General macros

Table 3. SILC-specific macros

CC Command name of a C compiler.
FC Command name of a Fortran compiler.

LINK.f Command name of a linker to be used for linking Fortran programs (default: the
command name specified by FC).

BISON Command name of GNU Bison.
FLEX Command name of GNU Flex.
CFLAGS Compiler options for the C compiler.
FFLAGS Compiler options for the Fortran compiler.
LDFLAGS Linker options for the C and Fortran compilers.
SHAREDCFLAGS C compiler options required when compiling shared libraries.
SHAREDFFLAGS Fortran compiler options required when compiling shared libraries.
SHAREDLDFLAGS C/Fortran compiler options required when linking shared libraries.

RANLIB Name of the ranlib command (for example, the echo command can be specified if the
target computing environment does not have the ranlib command).

RM Name of the rm command (usually not needed defining).

OMPFLAGS C/Fortran compiler options for enabling OpenMP-based parallelization.

LIBS Linker options for linking the SILC server and sample user programs (e.g., libraries
to be linked).

PLATFORM_MODULES

A list of environment-specific arithmetic matrix storage modules modules that you
want to build into the SILC server. The following modules can be specified (the
libraries that each module depends on, if any, are shown in the parentheses). See
Section 4.7 for the details of the modules.

$(FORMAT_DIR)/sparse_band.so (BLAS, LAPACK)

$(MODULE_DIR)/blasmodule.so (BLAS, LAPACK)

$(MODULE_DIR)/leq_lis.so (Lis)

$(MODULE_DIR)/fftss.so (FFTSS)

$(MODULE_DIR)/linpackmodule.so (LINPACK)

PLATFORM_TESTS

A list of environment-specific sample user programs that you want to build. The
following programs can be specified (the libraries that each program depends on, if
any, are shown in the parentheses).

test_dense (BLAS)

test_dense_sa (BLAS)

test_dot

test_dot_sa (BLAS)

test_band

test_band_sa (BLAS, LAPACK)

23

Subroutines of BLAS and LAPACK are used through a driver file. There are three pairs of BLAS and
LAPACK drivers shown below. Choose one of them according to the implementations of BLAS and
LAPACK you want to use.

Drivers for Intel Math Kernel Library (MKL)

blas_intelmkl.c, lapack_intelmkl.c

Drivers for Sun Performance Library

blas_sunperf.c, lapack_sunperf.c

Dumb (generic) drivers

blas_dumb.c, lapack_dumb.c

You have to define the following macros in the make.inc file to specify the drivers, compiler options and
linker options.

Examples of macro definitions for the dumb drivers are shown below.

BLAS_DRIVER= blas_dumb.c
BLAS_CFLAGS=
BLAS_LIBS= /opt/LAPACK/blas.a

LAPACK_DRIVER= lapack_dumb.c
LAPACK_CFLAGS= $(BLAS_CFLAGS)
LAPACK_LIBS= /opt/LAPACK/lapack.a $(BLAS_LIBS)

The SILC server and user programs will generate a lot of debugging messages, since the template files in
the silc-1.3/src/inc/ directory define the CFLAGS macro with the -DDEBUG option enabled by default.

mm_band (BLAS)

mm_band_sa (BLAS, LAPACK)

mm_lis (Lis)
BLAS_DRIVER BLAS driver name (described below).
BLAS_CFLAGS C compiler options for compiling the programs that use BLAS.
BLAS_LIBS Linker options for linking the programs that use BLAS (e.g., libraries to be linked).
LAPACK_DRIVER LAPACK driver name (described below).
LAPACK_CFLAGS C compiler options for compiling the programs that use LAPACK.

LAPACK_LIBS Linker options for linking the programs that use LAPACK (e.g., libraries to be
linked).

LIS_CFLAGS C compiler options for compiling the programs that use Lis.
LIS_LD Name of a linker for linking the programs that use Lis.
LIS_LIBS Linker options for linking the programs that use Lis (e.g., libraries to be linked).

LINPACK_LIBS Linker options for linking the programs that use LINPACK (e.g., libraries to be
linked).

BLAS_DRIVER BLAS driver file name
BLAS_CFLAGS C compiler options for BLAS
BLAS_LIBS Linker options for BLAS
LAPACK_DRIVER LAPACK driver file name
LAPACK_CFLAGS C compiler options for LAPACK
LAPACK_LIBS Linker options for LAPACK

24

You can suppress the messages by editing make.inc and removing the option.

After you have created make.inc in the silc-1.3/src/ directory, run the make command to compile the
SILC server and related programs as follows.

$ make

2.2. Running and stopping a SILC server

Before you run a user program for SILC, you need to start a SILC server. Type the following command to
run a SILC server (you also need to change the current working directory to the directory where the
executable file of the SILC server exists). The server starts in the foreground.

$ cd src/server
$./server

In shared-memory parallel computing environments, you can use an OpenMP-based parallel SILC server.
The OMP_NUM_THREADS environment variable is used to specify the number of threads as follows.

$ env OMP_NUM_THREADS=4 ./server

Unless explicitly specified, the port number through which the server accepts connections from user
programs will vary every time you restart the server. The SILC_PORT environment variable is used to
specify the port number as illustrated below.

$ env SILC_PORT=32000 ./server

The server creates a plain text file ~/.silc (if it does not exist) in your home directory and writes out the
server's host name and port number. The SILC_INIT routine (Section 3.1) reads the file and establishes a
connection to the server according to the host name and port number in the file. The contents of the file is
as follows.

hostName portNumber [EOF]

If the SILC server and user programs run in different computing environments with separate file systems,
you have to manually create ~/.silc in the file system from which the user programs (or precisely
speaking, the SILC_INIT routine) will read the file. The echo command will do for this task, as shown in
the following example.

$ echo hostName portNumber > ~/.silc

To stop the SILC server, simply type Ctrl-C or use the kill command as follows.

$ kill -9 processNumber

3. User programs for SILC

25

3.1. Writing user programs

User programs for SILC establish a connection to a SILC server over networks, and make use of matrix
computation libraries the SILC server maintains, by calling the following routines. These routines are
referred as client routines in this document. The arguments of the client routines are described in detail in
Section 5.

Client routines for C:

SILC_INIT

Establishes a connection to a SILC server.

SILC_PUT

Sends data (such as matrices and vectors) to the server.

SILC_EXEC

Sends a request for computation by means of mathematical expressions in the form of text. The
mathematical expressions are written in SILC's command language (described in Section 4).

SILC_GET

Receives the results of the computation.

SILC_FINALIZE

Closes the connection to the server.

Client routines for Fortran:

SILC_INIT

Establishes a connection to a SILC server.

SILC_PUT_SCALAR, SILC_PUT_MATRIX, SILC_PUT_MATRIX_CRS, etc.

Send data (such as matrices and vectors) to the server. Unlike the client routines for C, there is a
separate PUT routine for each data type.

SILC_EXEC

Sends a request for computation by means of mathematical expressions in the form of text. The
mathematical expressions are written in SILC's command language (described in Section 4).

SILC_GET_SCALAR, SILC_GET_MATRIX, SILC_GET_MATRIX_CRS, etc.

Receive the results of the computation. Like the PUT routines above, there is a separate GET routine
for each data type.

SILC_FINALIZE

Closes the connection to the server.

The client routines for both C and Fortran are defined in silc-1.3/src/client/libsilc.a. By linking
the library file to user programs, these client routines are made available. libsilc.a is built together with
the SILC server.

In addition, data structures and constants used with the client routines (see Section 5). are defined in silc-

26

1.3/src/client/client.h (for C) and silc-1.3/src/client/fortran/client.h (for Fortran).

Although user programs can be either sequential or multithreading parallel programs, all calls for client
routines must be made in the same thread.

An example of a user program in C (solve.c) is shown below. This program solves a system of linear
equation Ax = b, where A is a sparse matrix in the Compressed Row Storage (CRS) format.

#include "client.h"

int main(int argc, char *argv[])
{
 silc_envelope_t object; /* a structure used for data communications */
 double *value, *b, *x;
 int *index, *row;

 /* Create sparse matrix A (in the CRS format) and vector b */

 SILC_INIT();

 object.v = value;
 object.type = SILC_MATRIX_TYPE;
 object.format = SILC_FORMAT_CRS;
 object.precision = SILC_DOUBLE;
 object.m = object.n = N; /* dimensions */
 object.nnz = NNZ; /* the number of non-zero elements */
 object.row = row;
 object.index = index;
 SILC_PUT("A", &object);

 object.v = b;
 object.type = SILC_COLUMN_VECTOR_TYPE;
 object.precision = SILC_DOUBLE;
 object.length = N;
 SILC_PUT("b", &object);

 /* Solve a system of linear equations Ax = b */
 SILC_EXEC("x = A \\ b");

 object.v = x;
 SILC_GET(&object, "x");

 SILC_FINALIZE();

 /* Output the solution (vector x) */
}

A Fortran program (solve.f) that carries out the same computation as the C program above is shown
below.

 INCLUDE 'client.h'

 REAL *8 VALUE(NNZ), B(N), X(N)
 INTEGER *4 ROW(N+1), INDEX(NNZ), IERR

C Create sparse matrix A (in the CRS format) and vector b

 CALL SILC_INIT(IERR)

 CALL SILC_PUT_MATRIX_CRS('A', VALUE, N, N, NNZ, ROW, INDEX,
 & SILC_DOUBLE, IERR)

 CALL SILC_PUT_COLUMN_VECTOR('b', B, N, SILC_DOUBLE, IERR)

C Solve a system of linear equations Ax = b
 CALL SILC_EXEC('x = A \ b', IERR)

 CALL SILC_GET_COLUMN_VECTOR('x', X, IERR)

27

 CALL SILC_FINALIZE(IERR)

C Output the solution (vector x)

3.2. Compiling user programs

To compile user programs for SILC with a C/Fortran compiler, you need to specify (1) compiler options
for locating the header file (client.h) and library file (libsilc.a), and (2) linker options for specifying
the libraries to be linked (libsilc.a and additional libraries described below).

For example, GNU C compiler is used to compile the C program (solve.c) in the previous section by
running the gcc command as follows. In this example, it is assumed that the source code of SILC is placed
in the ~/silc-1.3/src/ directory in your home directory.

$ gcc -I~/silc-1.3/src/client -c solve.c
$ gcc -L~/silc-1.3/src/client -o solve solve.o -lsilc

The -I and -L options specify the locations of client.h and libsilc.a respectively, and -lsilc is a
linker option for linking libsilc.a to the user program.

For your convenience, if you repeatedly modify the user program and compile it, it is worth creating
Makefile like the one shown below.

all: solve

CC= gcc
CFLAGS= -I$$HOME/silc-1.3/src/client
LDFLAGS= -L$$HOME/silc-1.3/src/client
LIBS=

solve: solve.c
 $(CC) $(CFLAGS) -c solve.c
 $(CC) $(LDFLAGS) -o $@ solve.o -lsilc $(LIBS)

To compile solve.c using Makefile above, run the make command as follows:

$ make

GNU Fortran compiler is used to compile the Fortran program (solve.f) in the previous section by
running the g77 command as follows:

$ g77 -I~/silc-1.3/src/client/fortran -fno-second-underscore -c solve.f
$ g77 -L~/silc-1.3/src/client -o solve solve.o -lsilc

As it is in the case of the aforementioned C program, it is convenient to create Makefile like the following
one:

all: solve

FC= g77 -fno-second-underscore
FFLAGS= -I$$HOME/silc-1.3/src/client/fortran
LDFLAGS= -L$$HOME/silc-1.3/src/client
LIBS=

solve: solve.f
 $(FC) $(FFLAGS) -c solve.f
 $(FC) $(LDFLAGS) -o $@ solve.o -lsilc $(LIBS)

28

Some computing environments require additional libraries to be linked to user programs together with
libsilc.a in order to use networking facilities. Several computing environments and additional libraries
to be required are shown below. In the case of Makefile for C and Fortran shown above, specify the
additional libraries with the LIBS macro.

Table 4. Several computing environments and additional libraries for networking.

3.3. Data types and precisions

There are five types of data that are transferred between a SILC server and user programs. The constants
(shown in the parentheses) are used to specify the data types when calling the PUT/GET routines. These
constants are defined in client.h (see Section 5).

Scalar (SILC_SCALAR_TYPE)

Column vector (SILC_COLUMN_VECTOR_TYPE)

Row vector (SILC_ROW_VECTOR_TYPE)

Matrix (SILC_MATRIX_TYPE)

Cubic (3-dimensional) array (SILC_CUBIC_ARRAY_TYPE)

The table below summarizes precisions supported in SILC. The constants (shown in the parentheses) are
used to specify the precisions when calling the PUT/GET routines. The corresponding data types in C and
Fortran for each precision are also shown.

Table 5. Precisions in SILC.

3.4. Matrix storage formats

When transferring a matrix, you have to specify the storage format of the matrix together with the data
type (SILC_MATRIX_TYPE). Two matrix storage formats are currently supported as described below.

SILC_FORMAT_DENSE

This format is used to represent dense matrices. Elements of a dense matrix are stored in a 2-

Computing environment Additional libraries
Solaris -lsocket -lnsl

GNU/Linux None
Microsoft Windows (MinGW) -lws2_32

Mac OS X None

Precision C Fortran
Single precision integer (SILC_INT) int INTEGER*4

Double precision integer (SILC_LONG) long INTEGER*8

Single precision real (SILC_FLOAT) float REAL*4

Double precision real (SILC_DOUBLE) double REAL*8

Single precision complex (SILC_COMPLEX) float[a] COMPLEX*8

Double precision complex (SILC_DOUBLE_COMPLEX) double[a] COMPLEX*16

[a] In C, both the real and imaginary parts of a complex number are represented by a real number. An
array of N complex numbers are represented as an array of 2N real numbers that stores real and imaginary
parts alternatively.

29

dimensional array in the Fortran style. The format consists of the following attributes and array.

m

The number of rows (integer).

n

The number of columns (integer).

value

An array of m-by-n elements (any precision).

The elements are stored in the Fortran style (i.e., stored column by column). Note that 2-
dimensional arrays in the C style store elements row by row.

SILC_FORMAT_CRS

This format, called the Compressed Row Storage (CRS) format, is used to represent sparse matrices
compactly by storing only non-zero elements (those whose values are not zero) row by row. The
format consists of the following attributes and arrays.

m

The number of rows (integer).

n

The number of columns (integer).

nnz

The number of non-zero elements (integer).

value

An array of nnz elements (any precision).

This array stores non-zero elements row by row, leaving no space.

row

An array of m+1 elements (single precision integer).

This array stores a pointer (i.e., an index in the value array) to the first element of each row;
that is, row[0] stores a pointer to the first element of row 1, row[1] stores a pointer to the
first element of row 2, and so forth. row[m] stores the number of non-zero elements (i.e., nnz).

index

An array of nnz elements (single precision integer).

Each element of this array represents a column number of the non-zero element stored in the
corresponding index in the value array. For example, if value[7] holds the non-zero element
at column 5 of a row in a matrix, then index[7] holds the column number 5.

Example: The following 4-by-4 matrix is represented by the three arrays value, row, index, as shown
below.

30

 | 11 0 0 0 |
 | 0 22 0 0 |
 | 0 32 33 0 |
 | 41 0 0 44 |

value: 11, 22, 32, 33, 41, 44 (length 6)

row: 0, 1, 2, 4, 6 (length 5)

index: 1, 2, 2, 3, 1, 4 (length 6)

4. The command language

The argument of the SILC_EXEC routine is a mathematical expression in the form of text that instructs a
SILC server to carry out matrix computations. A mathematical expression is a kind of programs written in
SILC's command language.

The unit of computation to be carried out at once is a statement, which is an assignment statement, a
procedure call, or a system statement.

Assignment statement

An assignment statement stores a value to a variable. A variable name is specified in the left-hand
side of an equal sign (=), while an expression that yields the assigned value is written in the right-
hand side. Variables are used without type declaration, and they can retain any types of values. If a
new value is stored in an existing variable, its old value is deleted.

Procedure call

A procedure call instructs a call for a procedure.

System statement

System statements are used to control a SILC server's behavior. There is only the prefer statement
(Section 4.3) at the moment.

You can pass multiple statements to SILC_EXEC at once by concatenating them with semicolon (;).

4.1. Assignment statements

There are two types of assignment statements.

Simple assignment

This is an assignment in the form of "name = expression". The value of the expression is stored
into the variable of the specified name. A new variable is defined unless already defined; otherwise,
the value of the variable is replaced with the new value. When expression is a variable name as in
"A = B", the value of B is duplicated and assigned to A.

Augmented assignment

This is an assignment with a binary operation. There are seven augmented assignments as listed
below. For example, "name += expression" is equivalent to "name = name + expression". The
variable name in the left-hand side must be defined in advance.

name += expression

31

Addition.

name -= expression

Subtraction.

name *= expression

Multiplication.

name /= expression

Division.

name %= expression

Remainder.

name *@= expression

Elementwise multiplication.

name /@= expression

Elementwise division.

The right-hand side of an assignment statement is an expression, whose components are described below.
In the following descriptions, x, y, e1, e2, ..., and eN are arbitrary expressions. See Section 4.4 for the data
types that are acceptable as operands of unary and binary operators, and Section 5.3 for available built-in
functions and procedures.

Unary operators

x~

Complex conjugates.

x'

Conjugate transposes.

x'~ or x~'

Transposes.

-x

Negation.

Binary operators

x + y

Addition.

x - y

Subtraction.

x * y

32

Multiplication.

x / y

Division.

x % y

Remainder.

A \ b

Solution of systems of linear equations Ax = b, where A is an N-by-N matrix, and b is either a
vector of length N or an N-by-M matrix.

x *@ y

Elementwise multiplication.

x /@ y

Elementwise division.

Function calls

f(e1, e2, ..., eN)

f is a function name, and e1, e2, ..., eN are arbitrary expressions (i.e., arguments).

Concatenation

{e1, e2, ..., eN}

The values of the expressions are concatenated vertically. If all e1, e2, ..., eN are scalars, the
result of concatenation is a column vector.

{e1; e2; ...; eN}

The values of the expressions are concatenated horizontally. If all e1, e2, ..., eN are scalars, the
result of concatenation is a row vector.

{e1;; e2;; ...;; eN}

This always results in a cubic array.

Range

{e1:e2}

This generates a column vector whose elements are integer scalars from e1 to e2. The values
of the two expressions must be integer scalars.

Literals

Numbers are treated as double precision real (SILC_DOUBLE) if they have a dot; otherwise, numbers
are treated as single precision integer (SILC_INT).

Constants

33

e

Napier's constant.

i

The imaginary unit (complex numbers can be obtained by binary operators as in "3 - 5 *
i".)

pi

The ratio of a circle's circumference to its diameter.

inf

Infinity.

Miscellaneous

Variable names are expressions.

You can use parentheses in compound expressions to specify which part of an expression
should be evaluated first.

You can also use subscript (Section 4.6) to refer to part of data.

4.2. Procedure calls

A procedure call consists of a procedure name and a list of arguments, as illustrated below.

split(A, L, D, U)

This procedure divides matrix A into the three parts of lower triangle, main diagonal, and upper
triangle. These parts are stored in variables L, D, and U, respectively.

Procedures have three types of arguments as follows.

in

The arguments of this type deliver input data to procedures. The value of these arguments are never
modified.

out

The arguments of this type are used to receive output data from procedures.

inout

The arguments of this type are used for both delivering input data and receiving output data.

In the case of the procedure split above, the first argument is an in-argument, and the other three are out-
arguments.

4.3. System statements

System statements are used to control a SILC server's behavior. There is only one system statement at the
moment.

prefer moduleName

34

This statement reorders the search path of module functions by bringing the specified module to the
beginning of the list of modules. See Section 4.7 for more information on the way of looking up
module functions.

4.4. Operands of operators

Although operands of an operator can be arbitrary expressions, valid data types of the operands vary
according to the operator. The acceptable combinations of data types for each operator are summarized as
follows. The same restrictions on binary operators are applied to augmented assignments (Section 4.1).

Table 6. Unary operators.

Table 7. Binary operators.

Complex conjugates[a] Scalar, column/row vector, matrix, cubic array

Conjugate transposes[a][b] Scalar, column/row vector, matrix

Transposes[b] Scalar, column/row vector, matrix
Negation Scalar, column/row vector, matrix, cubic array
[a] If the precision of the operand is either integer or real, the result equals to the operand.

[b] If the operand is a scalar, the result equals to the operand.

Operator Left operand Right operand Result
Addition/subtraction Scalar Scalar Scalar

Column vector Column vector Column vector
Row vector Row vector Row vector
Matrix Matrix Matrix
Cubic array Cubic array Cubic array

Multiplication Scalar Scalar Scalar
Scalar Column vector Column vector
Scalar Row vector Row vector
Scalar Matrix Matrix
Column vector Scalar Column vector
Column vector Row vector Matrix
Row vector Scalar Row vector
Row vector Column vector Scalar[a]

Row vector Matrix Row vector
Matrix Scalar Matrix
Matrix Column vector Column vector
Matrix Matrix Matrix
Cubic array Scalar Cubic array

Division Scalar Scalar Scalar
Row vector Matrix Column vector
Matrix Matrix Matrix

Remainder[b] Scalar Scalar Scalar
Solution of systems of linear equations Scalar Scalar Scalar

Matrix Column vector Column vector
Matrix Matrix Matrix

Elementwise multiplication/division Scalar Scalar Scalar

35

4.5. Rules for precision conversion

If the two operands of a binary operator have a different precision, they are converted to the same
precision before computation. The following rules are applied to precision conversion.

The following relation (i.e., a partial order) is defined among the six precisions. If X → Y, then Y is
said a precision higher than X. Moreover, if X → Y and Y → Z, then X → Z.

 SILC_LONG → SILC_DOUBLE → SILC_DOUBLE_COMPLEX

 ↑ ↑ ↑

 SILC_INT → SILC_FLOAT → SILC_COMPLEX

If the precision of one operand is higher than that of the other, then the latter operand is converted to
the precision of the former.

For example, if one operand is of SILC_DOUBLE and the other is of SILC_FLOAT, then the latter is
converted to SILC_DOUBLE since it is a higher precision than SILC_FLOAT.

If neither operand has a precision higher than that of the other, then both operands are converted to a
common higher precision.

For example, if one operand is of SILC_DOUBLE and the other is of SILC_COMPLEX, then both
operands are converted to a common higher precision, that is SILC_DOUBLE_COMPLEX.

4.6. Subscript

You can use subscript with either a variable name on the left-hand side of an assignment statement, or
arbitrary expressions (including variable names). A variable name with subscript takes one of the
following three forms:

A[x]

A must be a column/row vector.

A[x,y]

A must be a matrix.

A[x,y,z]

A must be a cubic array.

where x, y, and z are expressions whose values are either an integer scalar or an integer column vector.
Expressions with other kinds of values result in a runtime error.

When you use a range as a subscript expression, you can omit the initial and/or end value(s) of the range.

Column vector Column vector Column vector
Row vector Row vector Row vector
Matrix Matrix Matrix
Cubic array Cubic array Cubic array

[a] The result represents the inner product of the two vectors.

[b] The precisions of the two operands must be integer.

36

For example, if A is a vector of length N, then A[:5] equals to A[1:5], A[5:] to A[5:N], and A[:] to A
[1:N], respectively.

The following table summarizes the functions of subscript, the contexts in which subscript can be used,
and some examples of mathematical expressions with subscript.

Table 8. Functions of subscript in various contexts.

4.7. Modules

Every operator, function, and procedure in the command language of SILC is carried out through a call for
a module function, which is a "wrapper" that actually calls a library function. Related module functions are
grouped into a module. There are several standard modules as shown below.

coremodule

Contains module functions for all data types except matrices.

dense

Contains module functions for dense matrices.

sparse_crs

Contains module functions for sparse matrices in the CRS format.

leq_lis

Provides access to the Lis iterative solvers library.

leq_cg

Implements the CG method for dense matrices and sparse matrices in the CRS format.

leq_gs

Implements the Gauss-Seidel method for dense matrices.

leq_lu

Implements the LU decomposition method for dense matrices.

Function Context Example

Partial reference

The right-hand side of an
assignment

B = A[1:5]

A partial vector (length 5) of A is stored to B.

In-arguments of functions
and procedures

Y = F(A[1:5,1:5])

Only a 5-by-5 submatrix of A is passed to
function F. Matrix A does not change.

Restricted assignment

The left-hand side of an
assignment

A[1:5,1:5] = B

A 5-by-5 submatrix of A is replaced with the
elements of matrix B.

Out-arguments of
procedures

P1(x, A[1:5])

Procedure P1 partially modifies vector A.

Partial reference +
restricted assignment

Inout-arguments of
procedures

P2(A[1:5,1:5])

Procedure P2 takes a 5-by-5 submatrix of A
and modifies its elements.

37

blasmodule

Contains module functions for matrix-vector product and other operators based on BLAS (Basic
Linear Algebra Subprograms).

fftss

Contains module functions for the FFTSS fast Fourier Transform library.

There are also a few experimental modules.

sparse_band

Implements the banded matrix storage format and the LU decomposition method based on
LAPACK (Linear Algebra PACKage).

sparse_jds

Implements the the Jagged Diagonal Storage (JDS) format.

leq_smsamg

Contains module functions for VINAS Super Matrix Solver AMG version 3.

leq_mp

Contains module functions for the mp_crs multiple precision iterative solvers library. This module
requires the GNU MP library.

linpackmodule

Contains module functions for the LINPACK benchmark.

Every operator, function, and procedure is handled by one of module functions in the modules above.
Some operators have multiple module functions that can handle them. For example, the three modules of
leq_cg, leq_gs, and leq_lu contain a module function for the backslash operator (i.e., solution of systems
of linear equations). Modules are maintained in a SILC server by means of a serial linked list. When the
SILC server needs to handle an operator, the server picks a module function by searching one module after
another from the beginning of the module list and selecting the first module function found in the list.
Module functions for functions and procedures are also looked up in the same way.

You can change the order of modules in the module list using the prefer statement (Section 4.3) in a call
for the SILC_EXEC routine. The prefer statement moves the specified module to the beginning of the list.
By changing the order of modules, you can easily specify the relations between operators (functions, or
procedures) and module functions.

5. API reference

5.1. Client routines for C

Header file: client.h

You use this header file when creating user programs for SILC.

Structure: silc_envelope_t

This structure is used as an argument of the SILC_PUT and SILC_GET routines. The structure has the

38

following members, and only some of them are used according to the type of data to be transferred.

Members common to all data types:

int type;

Data type (Section 3.3). The value of this member must be one of the following
constants.

int precision;

Precision (Section 3.3). The value of this member must be one of the following
constants.

const char *format;

Matrix storage format (Section 3.4). This member is used only when the data type is
SILC_MATRIX_TYPE. The value must be one of the following constants.

For SILC_SCALAR_TYPE:

void *v;

A pointer to the scalar value. (*)

For SILC_ROW_VECTOR_TYPE and SILC_COLUMN_VECTOR_TYPE:

size_t length;

The length of the vector.

void *v;

A pointer to an array that stores the elements of the vector. (*)

For SILC_MATRIX_TYPE (SILC_FORMAT_DENSE):

size_t m, n;

The dimensions of the matrix.

SILC_SCALAR_TYPE (scalar)
SILC_ROW_VECTOR_TYPE (row vector)
SILC_COLUMN_VECTOR_TYPE (column vector)
SILC_MATRIX_TYPE (matrix)
SILC_CUBIC_ARRAY_TYPE (cubic array)

SILC_INT (single precision integer)
SILC_LONG (double precision integer)
SILC_FLOAT (single precision real)
SILC_DOUBLE (double precision real)
SILC_COMPLEX (single precision complex)
SILC_DOUBLE_COMPLEX (double precision complex)

SILC_FORMAT_DENSE (dense matrix)
SILC_FORMAT_CRS (sparse matrix in the CRS format)

39

void *v;

A pointer to a Fortran-style 2-dimensional array that stores the elements of the matrix
column by column. (*)

For SILC_MATRIX_TYPE (SILC_FORMAT_CRS):

size_t m, n;

The dimensions of the matrix.

size_t nnz;

The number of non-zero elements.

void *v;

A pointer to an array of non-zero elements. (*)

int *row;

A pointer to an array of row pointers. (*)

int *index;

A pointer to an array of column indexes. (*)

The base (or origin) of elements in row and index must be zero.

For SILC_CUBIC_ARRAY_TYPE:

size_t l, m, n;

The dimensions of the cubic array.

void *v;

A pointer to a Fortran-style 3-dimensional array that stores the elements of the cubic
array. (*)

When calling SILC_GET, you need to initialize only the members with the asterisk mark (*). When
calling SILC_PUT, you have to set a valid value to all members.

The following client routines return 0 if no error occurs; otherwise, they return −1.

int SILC_INIT(void);

This routine establishes a connection to a SILC server. Call this routine before you start using the
SILC server (for example, at the beginning of a user program).

int SILC_FINALIZE(void);

This routine closes the connection to the SILC server. Call this routine when you stop using the
SILC server (for example, at the end of a user program).

int SILC_EXEC(const char *expr);

This routine sends a request for computation to the SILC server, where expr is a string of a
mathematical expression written in the command language (Section 4).

40

int SILC_PUT(const char *name, silc_envelope_t *envelope);

This routine associates a name with data and deposits the named data to the SILC server. The fist
argument is a string that represents the data name, and the second is a pointer to the
silc_envelope_t structure that holds the information on the data to be sent.

int SILC_GET(silc_envelope_t *envelope, const char *name);

This routine fetches data from the SILC server by specifying the name of the data to be received.
The first argument is a pointer to the silc_envelope_t structure, and the second argument is a
string that represents the data name.

You can allocate buffers for receiving data in either of the following two ways.

a. Allocating all buffers in advance.

If the member v of the silc_envelope_t structure is not NULL, then received data are stored
in the buffer pointed by v (as well as the buffers pointed by row and index in case of sparse
matrices in the CRS format).

b. Allowing the SILC_GET routine to allocate buffers automatically.

If the member v of the silc_envelope_t structure is NULL, then the SILC_GET routine
automatically allocates buffers of an appropriate size. You have to free the buffer pointed by v
(as well as the buffers pointed by row and index in case of sparse matrices in the CRS format)
if the received data are no longer needed.

5.2. Client routines for Fortran

Header file: client.h

You use this header file when creating user programs for SILC.

The following arguments are common to the client routines for Fortran.

INTEGER*4 precision

Precision (Section 3.3). The value of this member must be one of the following constants.

INTEGER*4 status

An exit status of a client routine. The value is 0 if no error occurs, and −1 otherwise.

In the following descriptions, type can be one of the following data types.

SILC_INT (single precision integer)
SILC_LONG (double precision integer)
SILC_FLOAT (single precision real)
SILC_DOUBLE (double precision real)
SILC_COMPLEX (single precision complex)
SILC_DOUBLE_COMPLEX (double precision complex)

INTEGER*4 (for SILC_INT)
INTEGER*8 (for SILC_LONG)
REAL*4 (for SILC_FLOAT)
REAL*8 (for SILC_DOUBLE)
COMPLEX*8 (for SILC_COMPLEX)

41

SILC_INIT(status)

This routine establishes a connection to a SILC server. Call this routine before you start using the
SILC server (for example, at the beginning of a user program).

Output:

INTEGER*4 status

An exit status.

SILC_FINALIZE(status)

This routine closes the connection to the SILC server. Call this routine when you stop using the
SILC server (for example, at the end of a user program).

Output:

INTEGER*4 status

An exit status.

SILC_EXEC(expr, status)

This routine sends a request for computation to the SILC server.

Input:

CHARACTER*size expr

A mathematical expression written in the command language (Section 4).

Output:

INTEGER*4 status

An exit status.

SILC_PUT_SCALAR(name, value, precision, status)

This routine associates a name with a scalar value and deposits it to the SILC server.

Input:

CHARACTER*size name

A name.

type value

The scalar value.

INTEGER*4 precision

The precision of the scalar value.

Output:

COMPLEX*16 (for SILC_DOUBLE_COMPLEX)

42

INTEGER*4 status

An exit status.

SILC_PUT_ROW_VECTOR(name, value, length, precision, status)

This routine associates a name with a row vector and deposits it to the SILC server.

Input:

CHARACTER*size name

A name.

type value(length)

The elements of the vector.

INTEGER*4 length

The length of the vector.

INTEGER*4 precision

The precision of the elements.

Output:

INTEGER*4 status

An exit status.

SILC_PUT_COLUMN_VECTOR(name, value, length, precision, status)

This routine associates a name with a column vector and deposits it to the SILC server.

Input:

CHARACTER*size name

A name.

type value(length)

The elements of the vector.

INTEGER*4 length

The length of the vector.

INTEGER*4 precision

The precision of the elements.

Output:

INTEGER*4 status

An exit status.

43

SILC_PUT_MATRIX(name, value, m, n, precision, status)

This routine associates a name with an M-by-N dense matrix and deposits it to the SILC server.

Input:

CHARACTER*size name

A name.

type value(m, n)

The elements of the matrix.

INTEGER*4 m, n

The dimensions of the matrix.

INTEGER*4 precision

The precision of the elements.

Output:

INTEGER*4 status

An exit status.

SILC_PUT_MATRIX_CRS(name, value, m, n, nnz, row, index, precision, status)

This routine associates a name with an M-by-N sparse matrix in the CRS format and deposits it to
the SILC server. Unlike the C version of the CRS format, the base (or origin) of elements of the
arrays row and index must be one.

Input:

CHARACTER*size name

A name.

type value(nnz)

The non-zero elements of the matrix.

INTEGER*4 m, n

The dimensions of the matrix.

INTEGER*4 nnz

The number of the non-zero elements.

INTEGER*4 row(m+1)

An array of row pointers.

INTEGER*4 index(nnz)

An array of column indexes.

44

INTEGER*4 precision

The precision of the non-zero elements.

Output:

INTEGER*4 status

An exit status.

SILC_PUT_CUBIC_ARRAY(name, value, l, m, n, precision, status)

This routine associates a name with an L-by-M-by-N cubic array and deposits it to the SILC server.

Input:

CHARACTER*size name

A name.

type value(l, m, n)

The elements of the cubic array.

INTEGER*4 l, m, n

The dimensions of the cubic array.

INTEGER*4 precision

The precision of the elements.

Output:

INTEGER*4 status

An exit status.

SILC_GET_SCALAR(name, value, status)

This routine receives a scalar value from the SILC server by specifying the name of the scalar value
to be fetched.

Input:

CHARACTER*size name

A name.

Output:

type value

The received scalar value.

INTEGER*4 status

An exit status.

SILC_GET_ROW_VECTOR(name, value, status)

45

This routine receives a row vector from the SILC server by specifying the name of the vector to be
fetched. You need to know the dimension of the vector (i.e., length) in advance in order to prepare
the output array value.

Input:

CHARACTER*size name

A name.

Output:

type value(length)

The elements of the received vector.

INTEGER*4 status

An exit status.

SILC_GET_COLUMN_VECTOR(name, value, status)

This routine receives a column vector from the SILC server by specifying the name of the vector to
be fetched. You need to know the dimension of the vector (i.e., length) in advance in order to
prepare the output array value.

Input:

CHARACTER*size name

A name.

Output:

type value(length)

The elements of the received vector.

INTEGER*4 status

An exit status.

SILC_GET_MATRIX(name, value, status)

This routine receives a dense matrix from the SILC server by specifying the name of the matrix to
be fetched. You need to know the dimensions of the matrix m and n in advance in order to prepare
the output array value.

Input:

CHARACTER*size name

A name.

Output:

type value(m, n)

The elements of the received matrix.

46

INTEGER*4 status

An exit status.

SILC_GET_MATRIX_CRS(name, value, row, index, status)

This routine receives a sparse matrix in the CRS format from the SILC server by specifying the
name of the matrix to be fetched. You need to know the dimensions of the matrix m and n as well as
the number of non-zero elements nnz in advance in order to prepare the output arrays value, row,
and index. The base (or origin) of elements of row and index is one.

Input:

CHARACTER*size name

A name.

Output:

type value(nnz)

The non-zero elements of the received matrix.

INTEGER*4 row(m+1)

An array of row pointers.

INTEGER*4 index(nnz)

An array of column indexes.

INTEGER*4 status

An exit status.

SILC_GET_CUBIC_ARRAY(name, value, status)

This routine receives a cubic array from the SILC server by specifying the name of the cubic array
to be fetched. You need to know the sizes of the cubic array (i.e., l, m, and n) in order to prepare the
output array value.

Input:

CHARACTER*size name

A name.

Output:

type value(l, m, n)

The elements of the received cubic array.

INTEGER*4 status

An exit status.

5.3. Built-in functions and procedures

Built-in functions and procedures are defined in modules. If two or more functions or procedures have the

47

same name, the function or procedure that is found first is called. By using the prefer statement
(Section 4.3) to change the order of modules, you can use specific functions and procedures defined in
particular modules.

5.3.1. coremodule

scalar dot(rowVector, columnVector) [function]

This function returns the inner product of the given vectors.

scalar sqrt(scalar) [function]

vector sqrt(vector) [function]

This function returns the square root of the given scalar value or elements of the given vector.

scalar norm2(vector) [function]

This function returns the 2-norm of the given vector.

scalar length(vector) [function]

This function returns the length (i.e., the number of elements) of the given vector.

scalar time() [function]

This function returns the time in seconds in double precision real.

5.3.2. dense module

columnVector diagvec(matrix) [function]

This function returns a column vector that consists of elements in the main diagonal of the given
matrix.

matrix zeros(scalar) [function]

matrix zeros(scalar, scalar) [function]

These functions return a dense matrix whose elements are 0 in double precision real. The zeros
function taking one argument returns a square matrix. The first and second arguments of the other
function specify the number of rows and the number of columns, respectively.

matrix ones(scalar) [function]

matrix ones(scalar, scalar) [function]

These functions return a dense matrix whose elements are 1 in double precision real. The ones
function taking one argument returns a square matrix. The first and second arguments of the other
function specify the number of rows and the number of columns, respectively.

matrix rand(scalar) [function]

matrix rand(scalar, scalar) [function]

These functions return a dense matrix whose elements are random numbers in double precision real.
The rand function taking one argument returns a square matrix. The first and second arguments of
the other function specify the number of rows and the number of columns, respectively. The
sequence of random numbers can be initialized with the srand procedure described below.

columnVector size(matrix) [function]

48

This function returns a column vector of length 2. The elements of the vector represent the
dimensions (i.e., the number of rows and the number of columns) of the given matrix.

scalar size(matrix, scalar) [function]

This function returns a dimension of the given matrix. The number of rows is returned if the second
argument is 1, while the number of columns is returned if the second argument is 2.

matrix full(scalar, scalar) [function]

This function returns an integer matrix of double precision. The first and second arguments specify
the number of rows and the number of columns, respectively. Elements of the matrix have non-zero
values (but they are not random numbers).

split(matrix IN, matrix OUT, matrix OUT, matrix OUT) [procedure]

This procedure divides the matrix of the first argument into lower triangle, main diagonal, and upper
triangle. These parts are stored in the three variables specified by the second, third, and forth
arguments, respectively.

srand(scalar IN) [procedure]

This procedure (re)initializes the Mersenne Twister random number generator, specifying a seed for
a new sequence of random numbers.

5.3.3. sparse_crs module

matrix sparse(vector r, vector c, vector v, scalar m, scalar n) [function]

matrix sparse(vector r, vector c, scalar v, scalar m, scalar n) [function]

These functions return a sparse matrix in the CRS format. Vector r in the first argument is a list of
row indices and vector c in the second argument is a list of column indices. If the third argument v is
a vector, the kth elements of r and c represent the row and column indices of the matrix to which the
kth element of v is stored. That is, v is a list of non-zero elements. In this case, the length of r, c and
v must be the same. If v is scalar, all non-zero elements in the matrix will be the same value. In this
case, the length of r and c must be the same. The fourth argument m is the number of rows and th
fifth argument m is the number of columns. The precision of the matrix will be the same as the
precision of v.

matrix zeros(scalar) [function]

matrix zeros(scalar, scalar) [function]

These functions return a sparse matrix (in the CRS format) whose elements are 0 in double precision
real. The zeros function taking one argument returns a square matrix. The first and second
arguments of the other function specify the number of rows and the number of columns,
respectively.

matrix eye(scalar) [function]

This function returns the identity matrix (in the CRS format) of the given dimension.

matrix diag(vector) [function]

matrix diag(vector, scalar) [function]

These functions return a sparse diagonal matrix in the CRS format. Let n be the length of the given
vector. If only one argument is specified, the diag function generates n-by-n diagonal matrix whose
diagonal elements are given by the vector. If the second argument is specified, it represents an offset
value (referred to as k). If k = 0, then diag(v, k) is equivalent to diag(v). If k > 0, a square matrix

49

with a diagonal starting from (1, k+1) is generated. If k < 0, the subdiagonal starts from (1-k, 1). The
dimension of the generated matrix is n+k.

vector diagvec(matrix) [function]

This function returns a vector that consists of elements in the main diagonal of the given matrix (in
the CRS format).

matrix fliplr(matrix) [function]

This function returns the given matrix (in the CRS format) with columns in the reversed order.

matrix flipud(matrix) [function]

This function returns the given matrix (in the CRS format) with rows in the reversed order.

5.3.4. sparse_band module

matrix CRS(matrix) [function]

This function converts the given matrix (in the banded storage format) to the CRS format and
returns a new matrix.

matrix band(matrix) [function]

This function converts the given matrix (in the CRS format) to the banded storage format and
returns a new matrix.

scalar rcond(matrix) [function]

This function returns the reciprocal of the estimated condition number of the given matrix (in the
banded storage format).

A. Revision history

October 31, 2007 (SILC v1.3)

Descriptions on how to compile a SILC server and user programs were added.

Some built-in functions were added to the API reference.

November 12, 2006 (SILC v1.2)

The source file of this document was converted into the DocBook XML format.

Descriptions of some built-in functions and procedures were added.

November 25, 2005 (SILC v1.1)

The first English edition.

$Id: users_en.xml,v 1.13 2007/10/31 06:31:35 kajiyama Exp $

50

	README.pdf
	win32.pdf
	console.pdf
	users.pdf

