1. H. Negishi, M. Kondo, H. Amakawa, S. Obara, and R. Kurose (2023). Bingham fluid simulations using a physically consistent particle method. Journal of Fluid Science and Technology. Volume 18. Issue 4. JFST0035. doi:10.1299/jfst.2023jfst0035.
  2. K. Chandran and G. Natarajan (2023). A velocity-coefficient independent pressure correction equation for accelerated convergence of linear systems in incompressible flows. Numerical Heat Transfer, Part B: Fundamentals. Published online: 03 Nov 2023. doi:10.1080/10407790.2023.2274449.
  3. R. Singhal, S. Dutta, and J. C. Kalita (2023). Comprehensive study of forced convection over a heated elliptical cylinder with varying angle of incidences to uniform free stream. International Journal of Thermal Sciences. Volume 194. 108588. doi:10.1016/j.ijthermalsci.2023.108588.
  4. S. E. Ouafa, S. Vincent, V. Le Chenadec, and B. Trouette (2023). Fully-coupled parallel solver for the simulation of two-phase incompressible flows. Computers & Fluids. Volume 265. 105995. doi:10.1016/j.compfluid.2023.105995.
  5. T. Abe and A. T. Chronopoulos (2023). The generalized residual cutting method and its convergence characteristics. Numerical Linear Algebra with Applications. First published: 20 June 2023. doi:10.1002/nla.2517.
  6. S. Giri and S. Sen (2023). Phase Error Analysis of Implicit Runge-Kutta Methods: New Classes of Minimal Dissipation Low Dispersion High Order Schemes. Journal of Scientific Computing. Volume 96. Article number 9. doi:10.1007/s10915-023-02220-7.
  7. M. A. Sbai and A. Larabi (2023). A Deforming Mixed-Hybrid Finite Element Model for Robust Groundwater Flow Simulation in 3D Unconfined Aquifers with Unstructured Layered Grids. Water. Volume 15. Issue 6. p. 1177. doi:10.3390/w15061177.
  8. R. B. Klein and B. Sanderse (2023). Structure-Preserving Hyper-Reduction and Temporal Localization for Reduced Order Models of Incompressible Flows. arXiv. 2304.09229. doi:10.48550/arXiv.2304.09229.
  9. H. Negishi, M. Kondo, H. Amakawa, S. Obara, and R. Kurose (2023). A fluid lubrication analysis including negative pressure using a physically consistent particle method. Computational Particle Mechanics. Published: 07 April 2023. doi:10.1007/s40571-023-00584-z.
  10. T. Hayashi, Y. Tokura, and K. Nishiguchi (2023). Statistical Properties of Electric Potentials in a Variable-Range Hopping Regime. Journal of the Physical Society of Japan. Volume 92. Number 3. 034001. doi:10.7566/JPSJ.92.034001.
  11. J. K. Patel (2023). Performance analysis and reconstruction of interface capturing schemes for multiphase flows. Numerical Heat Transfer, Part B: Fundamentals. Volume 83. Issue 4. pp. 227-242. doi:10.1080/10407790.2022.2156945.
  12. M. Parmananda, B. S. Vishnugopi, H. Garg, and P. P. Mukherjee (2022). Underpinnings of multi-scale interactions and heterogeneities in Li-ion batteries: electrode microstructure to cell format. Energy Technology. First published: 12 October 2022. doi:10.1002/ente.202200691.
  13. S. R. Jena, A. K. Naik, A. Dalal, and G. Natarajan (2022). Numerical analysis of turbulent forced convection and fluid flow past a triangular cylinder with control plate using standard κ-ε model. arXiv. 2206.12715. doi:10.48550/arXiv.2206.12715.
  14. R. Singhal and J. C. Kalita (2022). An efficient explicit jump High Order Compact immersed interface approach for transient incompressible viscous flows. Physics of Fluids. Volume 34. Issue 10. 103606. doi:10.1063/5.0107308.
  15. J. López and J. Hernández (2022). gVOF: An open-source package for unsplit geometric volume of fluid methods on arbitrary grids. Computer Physics Communications. Volume 277. 108400. doi:10.1016/j.cpc.2022.108400.
  16. K. Isupov (2022). Multiple-precision Sparse matrix-vector multiplication on GPUs. Journal of Computational Science. Volume 61. 101609. doi:10.1016/j.jocs.2022.101609.
  17. S. Itoh (2022). Improvement of preconditioned bi-Lanczos-type algorithms with residual norm minimization for the stable solution of systems of linear equations. Japan Journal of Industrial and Applied Mathematics. Volume 39. pp. 19-74. doi:10.1007/s13160-021-00480-0.
  18. S. Dutta and J. C. Kalita (2022). Heat and mass transfer characteristics of double-diffusive natural convection in a porous annulus: A higher-order compact approach. Heat Transfer. Volume 51. Issue 1. pp. 140-169. doi:10.1002/htj.22300.
  19. N. Watanabe, N. Watanabe, H. Saishu, and H. Asanuma (2021). Effects of Rock Mechanical Behaviors and Silica Precipitations on the Permeability Development in High-Temperature Granitic Rock Bodies: Numerical Studies. Proceedings of World Geothermal Congress 2020+1. 37009. URL:
  20. K. Anno, G. J. Moridis, and T. A. Blasingame (2021). JFTS+H: A Julia-Based Parallel Simulator for the Description of the Coupled flow, Thermal and Geochemical Processes in Hydrate-Bearing Geologic Media. Proceedings of SPE Reservoir Simulation Conference. SPE-203953-MS. doi:10.2118/203953-MS.
  21. M. Shakoor and C. H. Park (2021). A higher-order finite element method with unstructured anisotropic mesh adaption for two phase flows with surface tension. Computers & Fluids. Volume 230. 105154. doi:10.1016/j.compfluid.2021.105154.
  22. R. Singhal and J. C. Kalita (2021). A novel higher order compact-immersed interface approach for elliptic problems. Physics of Fluids. Volume 33. Issue 8. 087112. doi:10.1063/5.0059905.
  23. B. N. Vu, F. Wein, and M. Stingl (2021). Two-Scale Optimization and Generation of Anisotropic Cellular Designs in the Context of Additive Manufacturing. Computer-Aided Design. Volume 140. 103073. doi:10.1016/j.cad.2021.103073.
  24. S. Dutta, P. Kumar, and J. C. Kalita (2021). ψ-v Computation of steady-state conjugate heat transfer in backward-facing step flow. Heat Transfer. Volume 50. Issue 6. pp. 5714-5743. doi:10.1002/htj.22145.
  25. A. Assam and G. Natarajan (2021). A novel least squares finite volume scheme for discontinuous diffusion on unstructured meshes. Computers & Mathematics with Applications. Volume 96. pp. 120-130. doi:10.1016/j.camwa.2021.05.013.
  26. D. Su, K. U. Mayer, and K. T. B. MacQuarrie (2021). MIN3P-HPC: A High-Performance Unstructured Grid Code for Subsurface Flow and Reactive Transport Simulation. Mathematical Geosciences. Volume 53. pp. 517-550. doi:10.1007/s11004-020-09898-7.
  27. J. Machaček and P. Staubach (2021). numgeo: A finite-element program for the simulation of hydro-mechanically coupled geotechnical processes. Proceedings of Fachsektionstagung Geotechnik, 2021. 8pp. Deutsche Gesellschaft für Geotechnik e.V. (DGGT). URL:
  28. F. Shi, D. Wang, and X. Chen (2021). A Numerical Study on the Propagation Mechanisms of Hydraulic Fractures in Fracture-Cavity Carbonate Reservoirs. Computer Modeling in Engineering & Sciences. Volume 127. Number 2. pp. 575-598. doi:10.32604/cmes.2021.015384.
  29. M. Shakoor (2021). FEMS - A Mechanics-oriented Finite Element Modeling Software. Computer Physics Communications. Volume 260. 107729. doi:10.1016/j.cpc.2020.107729.
  30. K. Isupov, V. Knyazkov, I. Babeshko, and A. Krutikov (2020). Computing the Sparse Matrix-Vector Product in High-Precision Arithmetic for GPU Architectures. Mathematical Modeling and Supercomputer Technologies, 20th International Conference (MMST2020). pp 334-345. Springer. doi:10.1007/978-3-030-78759-2_28.
  31. P. Fritzson, A. Pop, K. Abdelhak, A. Ashgar, B. Bachmann, W. Braun, D. Bouskela, R. Braun, L. Buffoni, F. Casella, R. Castro, R. Franke, D. Fritzson, M. Gebremedhin, A. Heuermann, B. Lie, A. Mengist, L. Mikelsons, K. Moudgalya, L. Ochel, A. Palanisamy, V. Ruge, W. Schamai, M. Sjölund, B. Thiele, J. Tinnerholm, and P. Östlund (2020). The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Modeling, Identification and Control. Volume 41. Number 4. pp. 241-295. doi:10.4173/mic.2020.4.1.
  32. O. M. Khimich, O. V. Popov, O. V. Chistyakov, and V. A. Sidoruk (2020). A Parallel Algorithm for Solving a Partial Eigenvalue Problem for Block-Diagonal Bordered Matrices. Cybernetics and Systems Analysis. Volume 56. pp. 913-923. doi:10.1007/s10559-020-00311-z.
  33. M. Islam, N. Huerta, and R. Dilmore (2020). Effect of Computational Schemes on Coupled Flow and Geo-Mechanical Modeling of CO2 Leakage through a Compromised Well. Computation. Volume 8. Issue 4. 98. 30pp. doi:10.3390/computation8040098.
  34. S. Giri and S. Sen (2020). A new class of diagonally implicit Runge-Kutta methods with zero dissipation and minimized dispersion error. Journal of Computational and Applied Mathematics. Volume 376. 112841. doi:10.1016/
  35. P. Sarkar, G. J. Moridis, and T. A. Blasingame (2020). Evaluation of the Performance of Thermal EOR Processes in Fractured Shale Oil Formations. Proceedings of SPE Latin American and Caribbean Petroleum Engineering Conference. SPE-198981-MS. doi:10.2118/198981-MS.
  36. A. Robinson, J. Alvarez-Solas, M. Montoya, H. Goelzer, R. Greve, and C. Ritz (2020). Description and validation of the ice-sheet model Yelmo (version 1.0). Geoscientific Model Development. Volume 13. Issue 6. pp. 2805-2823. doi:10.5194/gmd-13-2805-2020.
  37. P. Kumar and J. C. Kalita (2020). An efficient ψ-v scheme for 2D laminar flow past bluff bodies on compact nonuniform grids. International Journal for Numerical Methods in Fluids. Volume 92. Issue 12. pp. 1723-1752. doi:10.1002/fld.4846.
  38. S. Dutta, P. Kumar, and J. C. Kalita (2020). Streamfunction-velocity computation of natural convection around heated bodies placed in a square enclosure. International Journal of Heat and Mass Transfer. Volume 152. 119550. doi:10.1016/j.ijheatmasstransfer.2020.119550.
  39. J. C. Kalita, S. Goyal, and U. Dixit (2020). Simulation of tumor-induced angiogenesis by an HOC approach. Annals of Mathematical Sciences and Applications. Volume 5. Number 1. pp. 7-39. doi:10.4310/AMSA.2020.v5.n1.a1.
  40. S. Bag and M. R. Amin (2020). Investigation on ultra-short pulse laser welding of dissimilar metallic materials expending phase lag influence. Journal of Thermal Science and Engineering Applications. Volume 12. Issue 5. 051014. doi:10.1115/1.4046360.
  41. S. Itoh and M. Sugihara (2020). Changing over stopping criterion for stable solving nonsymmetric linear equations by preconditioned conjugate gradient squared method. Applied Mathematics Letters. Volume 102. 106088. doi:10.1016/j.aml.2019.106088.
  42. L. C. Logan, S. H. K. Narayanan, R. Greve, and P. Heimbach (2020). SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD. Geoscientific Model Development. Volume 13. Issue 4. pp. 1845-1864. doi:10.5194/gmd-13-1845-2020.
  43. N. A. Rumman, P. Nair, P. Müller, L. Barthe, and D. Vanderhaeghe (2020). ISPH-PBD: coupled simulation of incompressible fluids and deformable bodies. The Visual Computer. Volume 36. pp. 893-910. doi:10.1007/s00371-019-01700-y.
  44. H. V. R. Mittal, J. C. Kalita, and Q. M. Al-Mdallal (2020). A hybrid ψ-v HOC approach for surface tension driven flows in level set framework. Computers & Mathematics with Applications. Volume 79. Issue 8. pp. 2350-2375. doi:10.1016/j.camwa.2019.11.004.
  45. S. Kotoky, A. Dalal, and G. Natarajan (2020). A computational analysis of the role of particle diameter on the fluidization behavior in a bubbling gas-solid fluidized bed. Computational Particle Mechanics. Volume 7. pp. 555-565. doi:10.1007/s40571-019-00279-4.
  46. J. M. Mantas and F. Vecil (2020). Hybrid OpenMP-CUDA parallel implementation of a deterministic solver for ultrashort DG-MOSFETs. The International Journal of High Performance Computing Applications. Volume 34. Issue 1. pp. 81-102. doi:10.1177/1094342019879985.
  47. J. Yang, R. Wolf, F. Toffoletto, S. Sazykin, W. Wang, and J. Cui (2019). The Inertialized Rice Convection Model. Journal of Geophysical Research: Space Physics. Volume 124. Issue 12. pp. 10294-10317. doi:10.1029/2019JA026811.
  48. J. Zhou, D. Perez-Grande, P. Fajardo, and E. Ahedo (2019). Numerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation code. Plasma Sources Science and Technology. Volume 28. Issue 11. 115004. doi:10.1088/1361-6595/ab4bd3.
  49. R. K. Ganeriwala (2019). Diablo Test Suite: Code Coverage Analysis. LLNL-TR-781020. Lawrence Livermore National Laboratory. doi:10.2172/1542726.
  50. D. K. Kolmogorov (2019). Numerical aspects of wall-distance computation for turbulence modeling. Journal of Physics. Conference Series. Volume 1400. 044037. doi:10.1088/1742-6596/1400/4/044037.
  51. M. Kumar and G. Natarajan (2019). Diffuse interface immersed boundary method for low Mach number flows with heat transfer in enclosures. Physics of Fluids. Volume 31. 083601. doi:10.1063/1.5100963.
  52. M. Iima (2019). Jacobian-free algorithm to calculate the phase sensitivity function in the phase reduction theory and its applications to Kármán's vortex street. Physical Review E. Volume 99. Issue 6. 062203. doi:10.1103/PhysRevE.99.062203.
  53. S. Itoh and M. Sugihara (2019). Structure of the preconditioned system in various preconditioned conjugate gradient squared algorithms. Results in Applied Mathematics. Volume 3. 100008. doi:10.1016/j.rinam.2019.100008.
  54. M. Parmananda, A. Dalal, and G. Natarajan (2019). Three-dimensional Analysis of Non-Boussinesq Natural Convection with Radiative Heat Transfer in a Vertical Seven Rod Bundle. International Heat Transfer Conference 16 (IHTC-16). Radiation and Thermal Insulation. pp. 8327-8336. doi:10.1615/IHTC16.rti.023267.
  55. M. Kumar and G. Natarajan (2019). Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems. Physical Review E. Volume 99. Issue 5. 053304. doi:10.1103/PhysRevE.99.053304.
  56. A. F. Queiruga, G. J. Moridis, and M. T. Reagan (2019). Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone. Part 2: Geomechanical Formulation and Numerical Coupling. Transport in Porous Media. Volume 128. Issue 1. pp. 221-241. doi:10.1007/s11242-019-01242-w.
  57. P. Kumar and J. C. Kalita (2019). A transformation-free ψ-v formulation of the Navier-Stokes equations on compact nonuniform grids. Journal of Computational and Applied Mathematics. Volume 353. pp. 292-317. doi:10.1016/
  58. M. Kumar and G. Natarajan (2019). The Non-Boussinesq Algorithm for High Temperature Gradient Thermobuoyant Flows with Magnetic Field. Computational Thermal Sciences. Volume 11. Issue 1-2. pp. 177-187. doi:10.1615/ComputThermalScien.2018024727.
  59. N. Mirkov, N. Vidanović, and G. Kastratović (2019). freeCappuccino - An Open Source Software Library for Computational Continuum Mechanics. Proceedings of International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech 2018). Experimental and Numerical Investigations in Materials Science and Engineering. Lecture Notes in Networks and Systems. Volume 54. pp. 137-147. Springer. doi:10.1007/978-3-319-99620-2_11.
  60. L. C. Logan, S. H. K. Narayanan, R. Greve, and P. Heimbach (2019). Sicopolis-AD: Quick-Start Manual. ANL/MCS-TM-382 Rev 0.10. Argonne National Laboratory. doi:10.2172/1499025.
  61. R. Shioya, M. Ogino, Y. Wada, K. Murotani, S. Koshizuka, H. Kawai, S. Sugimoto, and A. Takei (2018). Numerical Library Based on Hierarchical Domain Decomposition. Advanced Software Technologies for Post-Peta Scale Computing. pp 183-205. Springer. doi:10.1007/978-981-13-1924-2_10.
  62. M. Parmananda, A. Dalal, and G. Natarajan (2018). Numerical appraisal of three low Mach number algorithms for radiative-convective flows in enclosures. Computers & Mathematics with Applications. Volume 77. Issue 8. pp. 2162-2181. doi:10.1016/j.camwa.2018.12.005.
  63. M. Deka, S. Brahmachary, R. Thirumalaisamy, A. Dalal, and G. Natarajan (2018). A new Green-Gauss reconstruction on unstructured meshes. Part I: Gradient reconstruction. Journal of Computational Physics. Volume 422. 108325. doi:10.1016/
  64. M. Parmananda, A. Dalal, and G. Natarajan (2018). Unified framework for buoyancy induced radiative-convective flow and heat transfer on hybrid unstructured meshes. International Journal of Heat and Mass Transfer. Volume 126. Part B. pp. 908-925. doi:10.1016/j.ijheatmasstransfer.2018.05.092.
  65. J. K. Patel and G. Natarajan (2018). A cost-effective curvature calculation approach for interfacial flows on unstructured meshes. International Journal for Numerical Methods in Fluids. Volume 88. Issue 7. pp. 347-362. doi:10.1002/fld.4671.
  66. Y. -K. Chen and F. S. Milos (2018). Multidimensional Finite Volume Fully Implicit Ablation and Thermal Response Code. Journal of Spacecraft and Rockets. Volume 55. Number 4. July-August 2018. doi:10.2514/1.A34184.
  67. N. Tanabe and T. Endo (2018). Characterizing Memory-Latency Sensitivity of Sparse Matrix Kernels. Proceedings of 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). pp. 249-254. doi:10.1109/PDP2018.2018.00042.
  68. S. Biswas and J. C. Kalita (2018). Moffatt eddies in the driven cavity: A quantification study by an HOC approach. Computers & Mathematics with Applications. Volume 76. Issue 3. pp. 471-487. doi:10.1016/j.camwa.2018.04.030.
  69. S. Bag (2018). Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects. IOP Conference Series: Materials Science and Engineering. Volume 346. 012051. doi:10.1088/1757-899X/346/1/012068.
  70. J. Manik, A. Dalal, and G. Natarajan (2018). A generic algorithm for three-dimensional multi-phase flows on unstructured meshes. International Journal of Multiphase Flow. Volume 106. pp. 228-242. doi:10.1016/j.ijmultiphaseflow.2018.04.010.
  71. S. Sreekumar and E. M. Schlegel (2018). Time Evolution of Pulsar Magnetosphere I - An Implicit Approach. arXiv. 1804.07700. doi:10.48550/arXiv.1804.07700.
  72. R. Thirumalaisamy, G. Natarajan, and A. Dalal (2018). Towards an improved conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. Journal of Computational Physics. Volume 367. pp. 391-398. doi:10.1016/
  73. P. Borgohain, D. Choudhary, A. Dalal, and G. Natarajan (2018). Numerical investigation of mixing enhancement for multi-species flows in wavy channels. Chemical Engineering and Processing - Process Intensification. Volume 127. pp. 191-205. doi:10.1016/j.cep.2018.03.026.
  74. O. Kolditz, T. Nagel, H. Shao, W. Wang, and S. Bauer (2018). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Springer. doi:10.1007/978-3-319-68225-9.
  75. M. Parmananda, A. Dalal, and G. Natarajan (2018). The influence of partitions on predicting heat transfer due to the combined effects of convection and thermal radiation in cubical enclosures. International Journal of Heat and Mass Transfer. Volume 121. pp. 1179-1200. doi:10.1016/j.ijheatmasstransfer.2018.01.031.
  76. W. Yang, K. Li, and K. Li (2018). A parallel computing method using blocked format with optimal partitioning for SpMV on GPU. Journal of Computer and System Sciences. Volume 92. pp. 152-170. doi:10.1016/j.jcss.2017.09.010.
  77. T. Otani, M. Kobayashi, K. Nozaki, T. Gonda, Y. Maeda, and M. Tanaka (2018). Influence of mouthguard and their palatal design on the stress-state of tooth-periodontal ligament-bone complex under static loading. Dental Traumatology. Volume 34. Issue 3. pp. 208-213. doi:10.1111/edt.12386.
  78. J. K. Patel and G. Natarajan (2018). Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies. Journal of Computational Physics. Volume 360. pp. 207-228. doi:10.1016/
  79. J. -M. Plewa, O. Ducasse, P. Dessante, C. Jacob, N. Renon, and M. Yousfi (2018). 3D Streamers Simulation in a Pin to Plane Configuration using Massively Parallel Computing. Journal of Physics D. Volume 51. Number 9. 095206. doi:10.1088/1361-6463/aaa91b.
  80. C. Lehmann, O. Kolditz, and T. Nagel (2018). Models of Thermochemical Heat Storage. Springer. doi:10.1007/978-3-319-71523-0.
  81. O. M. Khimich, O. V. Popov, and O. V. Chistyakov (2017). Hybrid Algorithms for Solving the Algebraic Eigenvalue Problem with Sparse Matrices. Cybernetics and Systems Analysis. Volume 53. pp. 937-949. doi:10.1007/s10559-017-9996-5.
  82. J. K. Patel and G. Natarajan (2017). A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids. Journal of Computational Physics. Volume 350. pp. 207-236. doi:10.1016/
  83. Y. Huang, T. Nagel, and H. Shao (2017). Comparing global and local implementations of nonlinear complementary problems for the modeling of multi-component two-phase flow with phase change phenomena. Environmental Earth Sciences. Volume 76. 643. doi:10.1007/s12665-017-6970-5.
  84. J. Manik, M. Parmanand, S. Kotoky, P. Borgohain, A. Dalal, and G. Natarajan (2017). Lessons from Anupravaha: Towards a General Purpose Computational Framework on Hybrid Unstructured Meshes for Multi-physics Applications. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 1189-1202.
  85. M. Kumar and G. Natarajan (2017). Numerical Investigation of High Temperature Gradient Thermobuoyant Flows with Magnetic Field. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 993-1003.
  86. A. F. Queiruga and G. Moridis (2017). Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Computer Methods in Applied Mechanics and Engineering. Volume 322. pp. 97-122. doi:10.1016/j.cma.2017.04.016.
  87. T. Nagel, N. Böttcher, U. J. Görke, and O. Kolditz (2017). Computational Geotechnics – Storage of Energy Carriers. Springer. doi:10.1007/978-3-319-56962-8.
  88. F. C. Miranda, F. di Mare, A. Sadiki, and J. Janicka (2017). Performance analysis of different solvers for computing the radiative transfer equation in complex geometries using finite volume method and block structured grids. Computational Thermal Sciences. Volume 9. Issue 3. pp.269-282. doi:10.1615/ComputThermalScien.2017019001.
  89. P. Nair and G. Tomar (2017). A study of energy transfer during water entry of solids using incompressible SPH simulations. Sādhanā. Volume 42. Issue 4. pp. 517-531. doi:10.1007/s12046-017-0615-y.
  90. J. Mach, M. Beneš, and P. Strachota (2017). Nonlinear Galerkin finite element method applied to the system of reaction-diffusion equations in one space dimension. Computers & Mathematics with Applications. Volume 73. Issue 9. pp. 2053-2065. doi:10.1016/j.camwa.2017.02.032.
  91. H. Kanayama, M. Ogino, S. Sugimoto, K. Yodo, and H. Zheng (2017). On the Coarse Matrix Solver of Preconditioners for Magnetostatic Domain Decomposition Analysis. IEEJ Transactions on Power and Energy. Volume 137. Number 3. pp. 179-185. doi:10.1541/ieejpes.137.179.
  92. M. Gevorkyan, M. Hnatich, I. M. Gostev, A. V. Demidova, A. V. Korolkova, D. S. Kulyabov, and L. A. Sevastianov (2017). The Stochastic Processes Generation in OpenModelica. Communications in Computer and Information Science. Volume 678. pp. 538-552. Springer. doi:10.1007/978-3-319-51917-3_46.
  93. M. Parmananda, S. Khan, A. Dalal, and G. Natarajan (2017). Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries. International Journal of Heat and Mass Transfer. Volume 108. Part A. pp. 627-644. doi:10.1016/j.ijheatmasstransfer.2016.12.033.
  94. N. Watanabe, G. Blöcher, M. Cacace, S. Held, and T. Kohl (2017). Geoenergy Modeling III – Enhanced Geothermal Systems. Springer. doi:10.1007/978-3-319-46581-4.
  95. M. Kumar and G. Natarajan (2017). On the role of discrete mass conservation for non-Boussinesq flow simulations in enclosures. International Journal of Heat and Mass Transfer. Volume 104. pp. 1283-1299. doi:10.1016/j.ijheatmasstransfer.2016.09.073.
  96. J. -P. Wu (2016). Solution of Sparse Linear Systems with the Software Package LIS for Meso-scale Finite Element Simulation of Concrete Fractures. Materials Science and Engineering. pp. 830-836. doi:10.1142/9789813226517_0118.
  97. T. Hishinuma, H. Hasegawa, and T. Tanaka (2016). SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision. High Performance Computing for Computational Science – VECPAR 2016. Lecture Notes in Computer Science. Volume 10150. pp. 21-34. Springer. doi:10.1007/978-3-319-61982-8_4.
  98. I. Kissami, C. Cérin, F. Benkhaldoun, and G. Scarella (2016). Towards Parallel CFD Computation for the ADAPT Framework. Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science. Volume 10048. pp. 374-387. Springer. doi:10.1007/978-3-319-49583-5_28.
  99. J. K. Patel and G. Natarajan (2016). Volume-of-Solid Immersed Boundary Method for Free Surface Flows with Arbitrary Moving Rigid Bodies. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. pp. 1181-1192. Springer. doi:10.1007/978-81-322-2743-4_112.
  100. M. Kumar and G. Natarajan (2016). Unified Solver for Thermobuoyant Flows on Unstructured Meshes. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. pp. 569-580. Springer. doi:10.1007/978-81-322-2743-4_55.
  101. M. Cacace and M. Scheck-Wenderoth (2016). Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research. Volume 121. Issue 5. pp. 3742-3761. doi:10.1002/2015JB012682.
  102. R. B. Sills, A. Aghaei, and W. Cai (2016). Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Modelling and Simulation in Materials Science and Engineering. Volume 24. Number 4. 045019. 17pp. doi:10.1088/0965-0393/24/4/045019.
  103. J. -M. Plewa, O. Ducasse, P. Dessante, C. Jacobs, O. Eichwald, N. Renon, and M. Yousfi (2016). Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation. Plasma Science and Technology. Volume 18. Number 5. pp. 538-543. doi:10.1088/1009-0630/18/5/16.
  104. K. Li, W. Yang, and K. Li (2016). A Hybrid Parallel Solving Algorithm on GPU for Quasi-Tridiagonal System of Linear Equations. IEEE Transactions on Parallel and Distributed Systems. Volume 27. Issue 10. pp. 2795-2808. doi:10.1109/TPDS.2016.2516988.
  105. T. Abe, Y. Sekine, and K. Kikuchi (2015). Generalization of the residual cutting method based on the Krylov subspace. AIP Conference Proceedings. Volume 1738. Issue 1. 480044. doi:10.1063/1.4952280.
  106. N. Kruis and M. Krarti (2015). KivaTM: a numerical framework for improving foundation heat transfer calculations. Journal of Building Performance Simulation. Volume 8. Issue 6. pp. 449-468. doi:10.1080/19401493.2014.988753.
  107. T. Asada, R. Aizawa, T. Suzuki, Y. Fujishima, and E. Hoashi (2015). 3D MHD simulation of pressure drop and fluctuation in electromagnetic pump flow. Mechanical Engineering Journal. Volume 2. Number 5. p. 15-00230. doi:10.1299/mej.15-00230.
  108. A. B. Jacquey, M. Cacace, G. Blöcher, N. Watanabe, and M. Scheck-Wenderoth (2015). Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations. Transport in Porous Media. Volume 110. Issue 3. pp. 409-428. doi:10.1007/s11242-015-0564-z.
  109. S. Itoh and M. Sugihara (2015). Formulation of a Preconditioned Algorithm for Conjugate Gradient Squared Method in Accordance with Its Logical Structure. Applied Mathematics. Volume 6. Number 8. pp. 1389-1406. doi:10.4236/am.2015.68131.
  110. A. Mielnik-Pyszczorski, K. Gawarecki, and P. Machnikowski (2015). Phonon-assisted tunnelling of electrons in a quantum well/quantum dot injection structure. Physical Review B. Volume 91. Issue 19. 195421. 8pp. doi:10.1103/PhysRevB.91.195421.
  111. J. K. Patel and G. Natarajan (2015). A generic framework for design of interface capturing schemes for multi-fluid flows. Computers & Fluids. Volume 106. pp.108-118. doi:10.1016/j.compfluid.2014.10.005.
  112. T. Asada, Y. Hirata, R. Aizawa, Y. Fujishima, T. Suzuki, and E. Hoashi (2015). Development of a three-dimensional magnetohydrodynamics code for electromagnetic pumps. Journal of Nuclear Science and Technology. Volume 52. Issue 5. pp. 633-640. doi:10.1080/00223131.2014.961988.
  113. T. Hishinuma, A. Fujii, H. Hasegawa, and T. Tanaka (2014). AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector. Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science. Volume 8384. pp. 622-631. Springer. doi:10.1007/978-3-642-55224-3_58.
  114. W. Rühaak, V. F. Bense, and I. Sass (2014). 3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects. Computers & Geosciences. Volume 67. pp. 89-99. doi:10.1016/j.cageo.2014.03.001.
  115. L. Chen, D. Tao, P. Wu, and Z. Chen (2014). Extending checksum-based ABFT to tolerate soft errors online in iterative methods. Proceedings of 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). pp. 344-351. doi:10.1109/PADSW.2014.7097827.
  116. Y. Shimazu, T. Takeda, and W. F. G. van Rooijen (2014). Development of a three-dimensional kinetics code for commercial-scale FBR full core analysis. Proceedings of the ANS Physics of Reactors Topical Meeting. American Nuclear Society. CDROM. 15pp. hdl:10098/8510.
  117. P. Nair and G. Tomar (2014). An improved free surface modeling for incompressible SPH. Computers & Fluids. Volume 102. pp. 304-314. doi:10.1016/j.compfluid.2014.07.006.
  118. F. Vecil, J. M. Mantas, M. J. Cáceres, C. Sampedro, A. Godoy, and F. Gámiz (2014). A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo. Computers and Mathematics with Applications. Volume 67. Issue 9. pp. 1703-1721. doi:10.1016/j.camwa.2014.02.021.
  119. K. Gawarecki, P. Machnikowski, and T. Kuhn (2014). Electron states in a double quantum dot with broken axial symmetry. Physical Review B. Volume 90. Issue 8. 085437. 8pp. doi:10.1103/PhysRevB.90.085437.
  120. M. Basumatary, G. Natarajan and S. C. Mishra (2014). Defect correction based velocity reconstruction for physically consistent simulations of non-Newtonian flows on unstructured grids. Journal of Computational Physics. Volume 272. pp. 227-244. doi:10.1016/
  121. M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn (2014). RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples. Geoscientific Model Development. Volume 7. pp. 1-21. doi:10.5194/gmd-7-1-2014.
  122. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi (2014). A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis. Computers & Chemical Engineering. Volume 60. pp. 197-212. doi:10.1016/j.compchemeng.2013.09.002.
  123. T. R. Keen, T. J. Campbell, J. D. Dykes, and P. J. Martin (2013). Gerris Flow Solver: Implementation and Application. Memorandum Report. NRL/MR/7320--13-9441. NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS OCEANOGRAPHY DIV. 193pp. DTIC Online:ADA588626.
  124. V. Sedenka, J. Ciganek, P. Kadlec, Z. Raida, M. Wiktor, M. S. Sarto, and S. Greco (2013). Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility. Radioengineering. Volume 22. Number 1. pp. 309-317. hdl:11012/36852.
  125. M. Cacace, G. Blöcher, N. Watanabe, I. Moeck, N. Börsing, M. Scheck-Wenderoth, O. Kolditz, and E. Huenges (2013). Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences. Volume 70. Issue 8. pp. 3585-3602. doi:10.1007/s12665-013-2402-3.
  126. A. Cuoci, A. Frassoldati, A. Stagni, T. Faravelli, E. Ranzi, and G. Buzzi-Ferraris (2013). Numerical Modeling of NOx Formation in Turbulent Flames Using a Kinetic Post-processing Technique. Energy & Fuels. Volume 27. Issue 2. pp. 1104-1122. doi:10.1021/ef3016987.
  127. M. Meyer, J. Sallwey, R. Blankenburg, and P. Graeber (2012). Implementing Parallelism into an Unsaturated Soil Zone Simulation Model. Scientific Journal of RTU. Series 19. Volume 51. pp. 25-29. URL:
  128. S. Boehmer, T. Cramer, M. Hafner, E. Lange, C. Bischof, and K. Hameyer (2012). Numerical simulation of electrical machines by means of a hybrid parallelisation using MPI and OpenMP for finite-element method. IET Science, Measurement & Technology. Volume 6. Issue 5. pp. 339-343. doi:10.1049/iet-smt.2011.0126.
  129. T. Sato and R. Greve (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology. Volume 53. Number 60. pp. 221-228. doi:10.3189/2012AoG60A042.
  130. Y. Jiang, J. M. Stone, and S. W. Davis (2012). A Godunov Method for Multidimensional Radiation Magnetohydrodynamics Based on a Variable Eddington Tensor. The Astrophysical Journal Supplement Series. Volume 199. Number 1. 14. 29pp. doi:10.1088/0067-0049/199/1/14.
  131. C. Park, J. Taron, A. Singh, W. Wang, and C. McDermott (2012). Multiphase Flow Processes. Thermo-Hydro-Mechanical-Chemical Processes in Porous Media. Lecture Notes in Computational Science and Engineering. Volume 86. pp. 247-268. Springer. doi:10.1007/978-3-642-27177-9_12.
  132. C. Park, N. Böttcher, W. Wang, and O. Kolditz (2011). Are upwind techniques in multi-phase flow models necessary? Journal of Computational Physics. Volume 230. Issue 22. pp. 8304-8312. doi:10.1016/
  133. G. Natarajan and F. Sotiropoulos (2011). IDeC(k): A new velocity reconstruction algorithm on arbitrarily polygonal staggered meshes. Journal of Computational Physics. Volume 230. Issue 17. pp. 6583-6604. doi:10.1016/
  134. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2011). A new Iterative Alternating Direction Implicit (IADI) algorithm for multi-dimensional saturated-unsaturated flow. Journal of Hydrology. Volume 408. Issue 1-2. pp. 127-139. doi:10.1016/j.jhydrol.2011.07.030.
  135. M. Chuang and M. Kazhdan (2011). Fast Mean-Curvature Flow via Finite-Elements Tracking. Computer Graphics Forum. Volume 30. Issue 6. pp. 1750-1780. doi:10.1111/j.1467-8659.2011.01899.x.
  136. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2010). Three-dimensional finite difference saturated-unsaturated flow modeling with nonorthogonal grids using a coordinate transformation method. Water Resources Research. Volume 46. Issue 11. W11521. 18pp. doi:10.1029/2009WR009024.
  137. S. Itoh and M. Sugihara (2010). Systematic Performance Evaluation of Linear Solvers Using Quality Control Techniques. Software Automatic Tuning: From Concepts to State-of-the-Art Results. pp. 135-152. Springer. doi:10.1007/978-1-4419-6935-4_9.
  138. R. Suda, K. Naono, K. Teranishi, and J. Cavazos (2010). Software Automatic Tuning: Concepts and State-of-the-Art Results. Software Automatic Tuning: From Concepts to State-of-the-Art Results. pp. 3-15. Springer. doi:10.1007/978-1-4419-6935-4_1.
  139. R. Suda and Q. Ren (2009). Accurate Measurements and Precise Modeling of Power Dissipation of CUDA Kernels toward Power Optimized High Performance CPU-GPU Computing. Proceedings of 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies. pp. 432-438. IEEE. doi:10.1109/PDCAT.2009.65.
Please send us information about your publications to