1. P. Kumar and J. C. Calita (2019). A transformation-free ψ-v formulation of the Navier-Stokes equations on compact nonuniform grids. Journal of Computational and Applied Mathematics. Available online 3 January 2019. doi:10.1016/j.cam.2018.12.035.
  2. M. Kumar and G. Natarajan (2019). The Non-Boussinesq Algorithm for High Temperature Gradient Thermobuoyant Flows with Magnetic Field. Computational Thermal Sciences. Volume 11. Issue 1-2. pp. 177-187. doi:10.1615/ComputThermalScien.2018024727.
  3. N. Mirkov, N. Vidanović, and G. Kastratović (2019). freeCappuccino - An Open Source Software Library for Computational Continuum Mechanics. Proceedings of International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech 2018). Experimental and Numerical Investigations in Materials Science and Engineering. Lecture Notes in Networks and Systems. Volume 54. Springer. pp. 137-147. doi:10.1007/978-3-319-99620-2_11.
  4. M. Iima (2018). Jacobian-free algorithm to calculate the phase sensitivity function in the phase reduction theory and its applications to Kármán's vortex street. arXiv:1901.00478.
  5. M. Parmananda, A. Dalal, and G. Natarajan (2018). Numerical appraisal of three low Mach number algorithms for radiative-convective flows in enclosures. Computers & Mathematics with Applications. Available online 18 December 2018. doi:10.1016/j.camwa.2018.12.005.
  6. M. Deka, S. Brahmachary, R. Thirumalaisamy, A. Dalal, and G. Natarajan (2018). A new Green-Gauss reconstruction on unstructured meshes. Part I: Gradient reconstruction. Journal of Computational Physics. Available online 19 October 2018. doi:10.1016/j.jcp.2018.10.023.
  7. M. Parmananda, A. Dalal, and G. Natarajan (2018). Unified framework for buoyancy induced radiative-convective flow and heat transfer on hybrid unstructured meshes. International Journal of Heat and Mass Transfer. Volume 126. Part B. pp. 908-925. doi:10.1016/j.ijheatmasstransfer.2018.05.092.
  8. J. K. Patel and G. Natarajan (2018). A cost‐effective curvature calculation approach for interfacial flows on unstructured meshes. International Journal for Numerical Methods in Fluids. Short Communication. Volume 0. Issue ja. 05 July 2018. doi:10.1002/fld.4671.
  9. Y. -K. Chen and F. S. Milos (2018). Multidimensional Finite Volume Fully Implicit Ablation and Thermal Response Code. Journal of Spacecraft and Rockets. June 25, 2018. doi:10.2514/1.A34184.
  10. N. Tanabe and T. Endo (2018). Characterizing Memory-Latency Sensitivity of Sparse Matrix Kernels. Proceedings of 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). pp. 249-254. doi:10.1109/PDP2018.2018.00042.
  11. S. Biswas and J. C. Kalita (2018). Moffatt eddies in the driven cavity: A quantification study by an HOC approach. Computers & Mathematics with Applications. Volume 76. Issue 3. pp. 471-487. doi:10.1016/j.camwa.2018.04.030.
  12. S. Bag (2018). Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects. IOP Conference Series: Materials Science and Engineering. Volume 346. Conference 1. doi:10.1088/1757-899X/346/1/012068.
  13. J. Manik, A. Dalal, and G. Natarajan (2018). A generic algorithm for three-dimensional multi-phase flows on unstructured meshes. International Journal of Multiphase Flow. Volume 106. pp. 228-242. doi:10.1016/j.ijmultiphaseflow.2018.04.010.
  14. S. Sreekumar and E. M. Schlegel (2018). Time Evolution of Pulsar Magnetosphere I - An Implicit Approach. arXiv:1804.07700.
  15. R. Thirumalaisamy, G. Natarajan, and A. Dalal (2018). Towards an improved conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. Journal of Computational Physics. Volume 367. pp. 391-398. doi:10.1016/j.jcp.2018.04.024.
  16. P. Borgohain, D. Choudhary, A. Dalal, and G. Natarajan (2018). Numerical investigation of mixing enhancement for multi-species flows in wavy channels. Chemical Engineering and Processing - Process Intensification. Volume 127. pp. 191-205. doi:10.1016/j.cep.2018.03.026.
  17. O. Kolditz, T. Nagel, H. Shao, W. Wang, and S. Bauer (2018). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Springer. doi:10.1007/978-3-319-68225-9.
  18. M. Parmananda, A. Dalal, and G. Natarajan (2018). The influence of partitions on predicting heat transfer due to the combined effects of convection and thermal radiation in cubical enclosures. International Journal of Heat and Mass Transfer. Volume 121. pp. 1179-1200. doi:10.1016/j.ijheatmasstransfer.2018.01.031.
  19. W. Yang, K. Li, and K. Li (2018). A parallel computing method using blocked format with optimal partitioning for SpMV on GPU. Journal of Computer and System Sciences. Volume 92. pp. 152-170. doi:10.1016/j.jcss.2017.09.010.
  20. T. Otani, M. Kobayashi, K. Nozaki, T. Gonda, Y. Maeda, and M. Tanaka (2018). Influence of mouthguard and their palatal design on the stress-state of tooth-periodontal ligament-bone complex under static loading. Dental Traumatology. Volume 34. Issue 3. doi:10.1111/edt.12386.
  21. J. K. Patel and G. Natarajan (2018). Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies. Journal of Computational Physics. Volume 360. pp. 207-228. doi:10.1016/j.jcp.2018.01.024.
  22. J. -M. Plewa, O. Ducasse, P. Dessante, C. Jacob, N. Renon, and M. Yousfi (2018). 3D Streamers Simulation in a Pin to Plane Configuration using Massively Parallel Computing. Journal of Physics D. Volume 51. Number 9. 095206. doi:10.1088/1361-6463/aaa91b.
  23. C. Lehmann, O. Kolditz, and T. Nagel (2018). Models of Thermochemical Heat Storage. Springer. doi:10.1007/978-3-319-71523-0.
  24. J. K. Patel and G. Natarajan (2017). A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids. Journal of Computational Physics. Volume 350. pp. 207-236. doi:10.1016/j.jcp.2017.08.047.
  25. Y. Huang, T. Nagel, and H. Shao (2017). Comparing global and local implementations of nonlinear complementary problems for the modeling of multi-component two-phase flow with phase change phenomena. Environmental Earth Sciences. 76:643. doi:10.1007/s12665-017-6970-5.
  26. T. Abe and A. T. Chronopoulos (2017). Convergence characteristics of the generalized residual cutting method. arXiv:1709.07184.
  27. J. Manik, M. Parmanand, S. Kotoky, P. Borgohain, A. Dalal, and G. Natarajan (2017). Lessons from Anupravaha: Towards a General Purpose Computational Framework on Hybrid Unstructured Meshes for Multi-physics Applications. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 1189-1202.
  28. M. Kumar and G. Natarajan (2017). Numerical Investigation of High Temperature Gradient Thermobuoyant Flows with Magnetic Field. Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer. Begell House. pp. 993-1003.
  29. A. F. Queiruga and G. Moridis (2017). Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Computer Methods in Applied Mechanics and Engineering. Volume 322. pp. 97-122. doi:10.1016/j.cma.2017.04.016.
  30. T. Nagel, N. Böttcher, U. J. Görke, and O. Kolditz (2017). Computational Geotechnics – Storage of Energy Carriers. Springer. doi:10.1007/978-3-319-56962-8.
  31. F. C. Miranda, F. di Mare, A. Sadiki, and J. Janicka (2017). Performance analysis of different solvers for computing the radiative transfer equation in complex geometries using finite volume method and block structured grids. Computational Thermal Sciences. Volume 9. Issue 3. pp.269-282. doi:10.1615/ComputThermalScien.2017019001.
  32. P. Nair and G. Tomar (2017). A study of energy transfer during water entry of solids using incompressible SPH simulations. Sādhanā. Volume 42. Issue 4. pp. 517-531. doi:10.1007/s12046-017-0615-y.
  33. J. Mach, M. Beneš, and P. Strachota (2017). Nonlinear Galerkin finite element method applied to the system of reaction-diffusion equations in one space dimension. Computers & Mathematics with Applications. Volume 73. Issue 9. pp. 2053-2065. doi:10.1016/j.camwa.2017.02.032.
  34. H. Kanayama, M. Ogino, S. Sugimoto, K. Yodo, and H. Zheng (2017). On the Coarse Matrix Solver of Preconditioners for Magnetostatic Domain Decomposition Analysis. IEEJ Transactions on Power and Energy. Volume 137. Number 3. pp. 179-185. doi:10.1541/ieejpes.137.179.
  35. M. Gevorkyan, M. Hnatich, I. M. Gostev, A. V. Demidova, A. V. Korolkova, D. S. Kulyabov, and L. A. Sevastianov (2017). The Stochastic Processes Generation in OpenModelica. Communications in Computer and Information Science. Volume 678. Springer. pp. 538-552. doi:10.1007/978-3-319-51917-3_46.
  36. M. Parmananda, S. Khan, A. Dalal, and G. Natarajan (2017). Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries. International Journal of Heat and Mass Transfer. Volume 108. Part A. pp. 627-644. doi:10.1016/j.ijheatmasstransfer.2016.12.033.
  37. N. Watanabe, G. Blöcher, M. Cacace, S. Held, and T. Kohl (2017). Geoenergy Modeling III – Enhanced Geothermal Systems. Springer. doi:10.1007/978-3-319-46581-4.
  38. M. Kumar and G. Natarajan (2017). On the role of discrete mass conservation for non-Boussinesq flow simulations in enclosures. International Journal of Heat and Mass Transfer. Volume 104. pp. 1283-1299. doi:10.1016/j.ijheatmasstransfer.2016.09.073.
  39. 太田幸宏, 小久保達信 (2016). 京における倍々精度疎行列ベクトル積の性能に関する行列格納形式依存性. HPCI Research Report. Volume 1. Number 2. pp. 64-74. HPRR:hp120154.
  40. J. -P. Wu (2016). Solution of Sparse Linear Systems with the Software Package LIS for Meso-scale Finite Element Simulation of Concrete Fractures. Materials Science and Engineering. pp. 830-836. doi:10.1142/9789813226517_0118.
  41. T. Hishinuma, H. Hasegawa, and T. Tanaka (2016). SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision. High Performance Computing for Computational Science – VECPAR 2016. Lecture Notes in Computer Science. Volume 10150. Springer. pp. 21-34. doi:10.1007/978-3-319-61982-8_4.
  42. I. Kissami, C. Cérin, F. Benkhaldoun, and G. Scarella (2016). Towards Parallel CFD Computation for the ADAPT Framework. Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science. Volume 10048. Springer. pp. 374-387. doi:10.1007/978-3-319-49583-5_28.
  43. J. K. Patel and G. Natarajan (2016). Volume-of-Solid Immersed Boundary Method for Free Surface Flows with Arbitrary Moving Rigid Bodies. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer. pp. 1181-1192. doi:10.1007/978-81-322-2743-4_112.
  44. M. Kumar and G. Natarajan (2016). Unified Solver for Thermobuoyant Flows on Unstructured Meshes. Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer. pp. 569-580. doi:10.1007/978-81-322-2743-4_55.
  45. M. Cacace and M. Scheck-Wenderoth (2016). Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research. Volume 121. Issue 5. pp. 3742-3761. doi:10.1002/2015JB012682.
  46. R. B. Sills, A. Aghaei, and W. Cai (2016). Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Modelling and Simulation in Materials Science and Engineering. Volume 24. Number 4. 045019. 17pp. doi:10.1088/0965-0393/24/4/045019.
  47. J. -M. Plewa, O. Ducasse, P. Dessante, C. Jacobs, O. Eichwald, N. Renon, and M. Yousfi (2016). Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation. Plasma Science and Technology. Volume 18. Number 5. pp. 538-543. doi:10.1088/1009-0630/18/5/16.
  48. S. Itoh and M. Sugihara (2016). Analysis of the structure of the Krylov subspace in various preconditioned CGS algorithms. arXiv:1603.00176.
  49. K. Li, W. Yang, and K. Li (2016). A Hybrid Parallel Solving Algorithm on GPU for Quasi-Tridiagonal System of Linear Equations. IEEE Transactions on Parallel and Distributed Systems. Volume 27. Issue 10. pp. 2795-2808. doi:10.1109/TPDS.2016.2516988.
  50. T. Abe, Y. Sekine, and K. Kikuchi (2015). Generalization of the residual cutting method based on the Krylov subspace. AIP Conference Proceedings. Volume 1738. Issue 1. doi:10.1063/1.4952280.
  51. N. Kruis and M. Krarti (2015). KivaTM: a numerical framework for improving foundation heat transfer calculations. Journal of Building Performance Simulation. Volume 8. Issue 6. pp. 449-468. doi:10.1080/19401493.2014.988753.
  52. T. Asada, R. Aizawa, T. Suzuki, Y. Fujishima, and E. Hoashi (2015). 3D MHD simulation of pressure drop and fluctuation in electromagnetic pump flow. Mechanical Engineering Journal. Volume 2. Number 5. p. 15-00230. doi:10.1299/mej.15-00230.
  53. A. B. Jacquey, M. Cacace, G. Blöcher, N. Watanabe, and M. Scheck-Wenderoth (2015). Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations. Transport in Porous Media. Volume 110. Issue 3. pp. 409-428. doi:10.1007/s11242-015-0564-z.
  54. S. Itoh and M. Sugihara (2015). Formulation of a Preconditioned Algorithm for Conjugate Gradient Squared Method in Accordance with Its Logical Structure. Applied Mathematics. Volume 6. Number 8. pp. 1389-1406. doi:10.4236/am.2015.68131.
  55. A. Mielnik-Pyszczorski, K. Gawarecki, and P. Machnikowski (2015). Phonon-assisted tunnelling of electrons in a quantum well/quantum dot injection structure. Physical Review B. Volume 91. Issue 19. 195421. 8pp. doi:10.1103/PhysRevB.91.195421.
  56. J. K. Patel and G. Natarajan (2015). A generic framework for design of interface capturing schemes for multi-fluid flows. Computers & Fluids. Volume 106. pp.108-118. doi:10.1016/j.compfluid.2014.10.005.
  57. T. Asada, Y. Hirata, R. Aizawa, Y. Fujishima, T. Suzuki, and E. Hoashi (2015). Development of a three-dimensional magnetohydrodynamics code for electromagnetic pumps. Journal of Nuclear Science and Technology. Volume 52. Issue 5. pp. 633-640. doi:10.1080/00223131.2014.961988.
  58. T. Hishinuma, A. Fujii, H. Hasegawa, and T. Tanaka (2014). AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector. Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science. Volume 8384. Springer. pp. 622-631. doi:10.1007/978-3-642-55224-3_58.
  59. W. Rühaak, V. F. Bense, and I. Sass (2014). 3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects. Computers & Geosciences. Volume 67. pp. 89-99. doi:10.1016/j.cageo.2014.03.001.
  60. L. Chen, D. Tao, P. Wu, and Z. Chen (2014). Extending checksum-based ABFT to tolerate soft errors online in iterative methods. Proceedings of 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). pp. 344-351. doi:10.1109/PADSW.2014.7097827.
  61. 菱沼利彰, 藤井昭宏, 田中輝雄, 長谷川秀彦 (2014). AVX2を用いた倍精度BCRS形式疎行列と倍々精度ベクトル積の高速化. 情報処理学会論文誌コンピューティングシステム (ACS). Volume 7. Number 4. pp. 25-33. Permalink:http://id.nii.ac.jp/1001/00107485.
  62. Y. Shimazu, T. Takeda, and W. F. G. van Rooijen (2014). Development of a three-dimensional kinetics code for commercial-scale FBR full core analysis. Proceedings of the ANS Physics of Reactors Topical Meeting. American Nuclear Society. CDROM. 15pp. hdl:10098/8510.
  63. P. Nair and G. Tomar (2014). An improved free surface modeling for incompressible SPH. Computers & Fluids. Volume 102. pp. 304-314. doi:10.1016/j.compfluid.2014.07.006.
  64. F. Vecil, J. M. Mantas, M. J. Cáceres, C. Sampedro, A. Godoy, and F. Gámiz (2014). A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo. Computers and Mathematics with Applications. Volume 67. Issue 9. pp. 1703-1721. doi:10.1016/j.camwa.2014.02.021.
  65. K. Gawarecki, P. Machnikowski, and T. Kuhn (2014). Electron states in a double quantum dot with broken axial symmetry. Physical Review B. Volume 90. Issue 8. 085437. 8pp. doi:10.1103/PhysRevB.90.085437.
  66. M. Basumatary, G. Natarajan and S. C. Mishra (2014). Defect correction based velocity reconstruction for physically consistent simulations of non-Newtonian flows on unstructured grids. Journal of Computational Physics. Volume 272. pp. 227-244. doi:10.1016/j.jcp.2014.04.033.
  67. M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn (2014). RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples. Geoscientific Model Development. Volume 7. pp. 1-21. doi:10.5194/gmd-7-1-2014.
  68. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi (2014). A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis. Computers & Chemical Engineering. Volume 60. pp. 197-212. doi:10.1016/j.compchemeng.2013.09.002.
  69. 伊藤祥司, 杉原正顕 (2013). 導出過程に着目したCGS法の前処理付きアルゴリズム. 日本応用数理学会論文誌. Volume 23. Number 2. pp. 253-286. URL:http://ci.nii.ac.jp/naid/110009616463.
  70. T. R. Keen, T. J. Campbell, J. D. Dykes, and P. J. Martin (2013). Gerris Flow Solver: Implementation and Application. Memorandum Report. NRL/MR/7320--13-9441. NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS OCEANOGRAPHY DIV. 193pp. DTIC Online:ADA588626.
  71. V. Sedenka, J. Ciganek, P. Kadlec, Z. Raida, M. Wiktor, M. S. Sarto, and S. Greco (2013). Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility. Radioengineering. Volume 22. Number 1. pp. 309-317.
  72. M. Cacace, G. Blöcher, N. Watanabe, I. Moeck, N. Börsing, M. Scheck-Wenderoth, O. Kolditz, and E. Huenges (2013). Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences. Volume 70. Issue 8. pp. 3585-3602. doi:10.1007/s12665-013-2402-3.
  73. A. Cuoci, A. Frassoldati, A. Stagni, T. Faravelli, E. Ranzi, and G. Buzzi-Ferraris (2013). Numerical Modeling of NOx Formation in Turbulent Flames Using a Kinetic Post-processing Technique. Energy & Fuels. Volume 27. Issue 2. pp. 1104-1122. doi:10.1021/ef3016987.
  74. M. Meyer, J. Sallwey, R. Blankenburg, and P. Graeber (2012). Implementing Parallelism into an Unsaturated Soil Zone Simulation Model. Scientific Journal of RTU. Series 19. Volume 51. pp. 25-29. URL:https://ortus.rtu.lv/science/lv/publications/15356.
  75. S. Boehmer, T. Cramer, M. Hafner, E. Lange, C. Bischof, and K. Hameyer (2012). Numerical simulation of electrical machines by means of a hybrid parallelisation using MPI and OpenMP for finite-element method. IET Science, Measurement & Technology. Volume 6. Issue 5. pp. 339-343. doi:10.1049/iet-smt.2011.0126.
  76. T. Sato and R. Greve (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology. Volume 53. Number 60. pp. 221-228. doi:10.3189/2012AoG60A042.
  77. Y. Jiang, J. M. Stone, and S. W. Davis (2012). A Godunov Method for Multidimensional Radiation Magnetohydrodynamics Based on a Variable Eddington Tensor. The Astrophysical Journal Supplement Series. Volume 199. Number 1. 14. 29pp. doi:10.1088/0067-0049/199/1/14.
  78. C. Park, J. Taron, A. Singh, W. Wang, and C. McDermott (2012). Multiphase Flow Processes. Thermo-Hydro-Mechanical-Chemical Processes in Porous Media. Lecture Notes in Computational Science and Engineering. Volume 86. Springer. pp. 247-268. doi:10.1007/978-3-642-27177-9_12.
  79. 伊藤祥司, 片桐孝洋, 櫻井隆雄, 猪貝光祥, 大島聡史, 黒田久泰, 直野健 (2012). BiCGStab法の前処理付きアルゴリズムに対する改善. 情報処理学会論文誌コンピューティングシステム (ACS). Volume 5. Number 3. pp. 11-21. Permalink:http://id.nii.ac.jp/1001/00082470.
  80. 安藤広一, 山崎晴雄 (2012). ダイレイタンシーを考慮したCIP法による砂層における断層関連撓曲の発生シミュレーション. 地震. 第2輯. Volume 65. pp. 135-149. doi:10.4294/zisin.65.135.
  81. 徳田茂史, 久保田正人, 坂本博信, 野口泰 (2012). Adjoint法による吸気ポートの形状最適化. 自動車技術会論文集. Volume 43. Number 4. pp. 943-948. doi:10.11351/jsaeronbun.43.943.
  82. 松下洋介 (2011). 石炭の反応器モデリング. 日本エネルギー学会誌. Volume 90. Number 2. pp. 132-139. URL:http://id.ndl.go.jp/bib/11012172.
  83. C. Park, N. Böttcher, W. Wang, and O. Kolditz (2011). Are upwind techniques in multi-phase flow models necessary? Journal of Computational Physics. Volume 230. Issue 22. pp. 8304-8312. doi:10.1016/j.jcp.2011.07.030.
  84. G. Natarajan and F. Sotiropoulos (2011). IDeC(k): A new velocity reconstruction algorithm on arbitrarily polygonal staggered meshes. Journal of Computational Physics. Volume 230. Issue 17. pp. 6583-6604. doi:10.1016/j.jcp.2011.04.039.
  85. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2011). A new Iterative Alternating Direction Implicit (IADI) algorithm for multi-dimensional saturated-unsaturated flow. Journal of Hydrology. Volume 408. Issue 1-2. pp. 127-139. doi:10.1016/j.jhydrol.2011.07.030.
  86. M. Chuang and M. Kazhdan (2011). Fast Mean-Curvature Flow via Finite-Elements Tracking. Computer Graphics Forum. Volume 30. Issue 6. pp. 1750-1780. doi:10.1111/j.1467-8659.2011.01899.x.
  87. H. An, Y. Ichikawa, Y. Tachikawa, and M. Shiiba (2010). Three-dimensional finite difference saturated-unsaturated flow modeling with nonorthogonal grids using a coordinate transformation method. Water Resources Research. Volume 46. Issue 11. W11521. 18pp. doi:10.1029/2009WR009024.
  88. S. Itoh and M. Sugihara (2010). Systematic Performance Evaluation of Linear Solvers Using Quality Control Techniques. Software Automatic Tuning: From Concepts to State-of-the-Art Results. Springer. pp. 135-152. doi:10.1007/978-1-4419-6935-4_9.
  89. R. Suda, K. Naono, K. Teranishi, and J. Cavazos (2010). Software Automatic Tuning: Concepts and State-of-the-Art Results. Software Automatic Tuning: From Concepts to State-of-the-Art Results. Springer. pp. 3-15. doi:10.1007/978-1-4419-6935-4_1.
  90. 伊藤祥司, 杉原正顕, 姫野龍太郎 (2010). クリロフ部分空間法に対する前処理方式と収束判定について. 情報処理学会論文誌コンピューティングシステム (ACS). Volume 3. Number 2. pp. 9-19. Permalink:http://id.nii.ac.jp/1001/00069729.
  91. R. Suda and Q. Ren (2009). Accurate Measurements and Precise Modeling of Power Dissipation of CUDA Kernels toward Power Optimized High Performance CPU-GPU Computing. Proceedings of 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies. IEEE. pp. 432-438. doi:10.1109/PDCAT.2009.65.
  92. 上田匠, 内田利弘 (2009). 反復法ライブラリ Lis を用いた地磁気地電流法の差分法3次元数値計算. 日本計算工学会論文集. Paper Number.20090019. 8pp. JOI:JST.JSTAGE/jsces/2009.20090019.
文献に関する情報を devel@ssisc.org までお寄せください.